![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oef1o | Unicode version |
Description: A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption can be discharged using fveqf1o 6205.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.) |
Ref | Expression |
---|---|
oef1o.f | |
oef1o.g | |
oef1o.a | |
oef1o.b | |
oef1o.c | |
oef1o.d | |
oef1o.z | |
oef1o.k | |
oef1o.h |
Ref | Expression |
---|---|
oef1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . . . 5 | |
2 | oef1o.c | . . . . 5 | |
3 | oef1o.d | . . . . 5 | |
4 | 1, 2, 3 | cantnff1o 8158 | . . . 4 |
5 | eqid 2457 | . . . . . . . 8 | |
6 | eqid 2457 | . . . . . . . 8 | |
7 | eqid 2457 | . . . . . . . 8 | |
8 | oef1o.g | . . . . . . . . 9 | |
9 | f1ocnv 5833 | . . . . . . . . 9 | |
10 | 8, 9 | syl 16 | . . . . . . . 8 |
11 | oef1o.f | . . . . . . . 8 | |
12 | ssv 3523 | . . . . . . . . 9 | |
13 | oef1o.b | . . . . . . . . 9 | |
14 | 12, 13 | sseldi 3501 | . . . . . . . 8 |
15 | oef1o.a | . . . . . . . . . 10 | |
16 | 15 | eldifad 3487 | . . . . . . . . 9 |
17 | 12, 16 | sseldi 3501 | . . . . . . . 8 |
18 | 12, 3 | sseldi 3501 | . . . . . . . 8 |
19 | 12, 2 | sseldi 3501 | . . . . . . . 8 |
20 | ondif1 7170 | . . . . . . . . . 10 | |
21 | 20 | simprbi 464 | . . . . . . . . 9 |
22 | 15, 21 | syl 16 | . . . . . . . 8 |
23 | 5, 6, 7, 10, 11, 14, 17, 18, 19, 22 | mapfien 7887 | . . . . . . 7 |
24 | oef1o.k | . . . . . . . 8 | |
25 | f1oeq1 5812 | . . . . . . . 8 | |
26 | 24, 25 | ax-mp 5 | . . . . . . 7 |
27 | 23, 26 | sylibr 212 | . . . . . 6 |
28 | eqid 2457 | . . . . . . . . 9 | |
29 | 28, 2, 3 | cantnfdm 8102 | . . . . . . . 8 |
30 | oef1o.z | . . . . . . . . . 10 | |
31 | 30 | breq2d 4464 | . . . . . . . . 9 |
32 | 31 | rabbidv 3101 | . . . . . . . 8 |
33 | 29, 32 | eqtr4d 2501 | . . . . . . 7 |
34 | f1oeq3 5814 | . . . . . . 7 | |
35 | 33, 34 | syl 16 | . . . . . 6 |
36 | 27, 35 | mpbird 232 | . . . . 5 |
37 | 5, 16, 13 | cantnfdm 8102 | . . . . . 6 |
38 | f1oeq2 5813 | . . . . . 6 | |
39 | 37, 38 | syl 16 | . . . . 5 |
40 | 36, 39 | mpbird 232 | . . . 4 |
41 | f1oco 5843 | . . . 4 | |
42 | 4, 40, 41 | syl2anc 661 | . . 3 |
43 | eqid 2457 | . . . . 5 | |
44 | 43, 16, 13 | cantnff1o 8158 | . . . 4 |
45 | f1ocnv 5833 | . . . 4 | |
46 | 44, 45 | syl 16 | . . 3 |
47 | f1oco 5843 | . . 3 | |
48 | 42, 46, 47 | syl2anc 661 | . 2 |
49 | oef1o.h | . . 3 | |
50 | f1oeq1 5812 | . . 3 | |
51 | 49, 50 | ax-mp 5 | . 2 |
52 | 48, 51 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 { crab 2811
cvv 3109
\ cdif 3472 c0 3784 class class class wbr 4452
e. cmpt 4510 con0 4883 `' ccnv 5003 dom cdm 5004
o. ccom 5008 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
c1o 7142
coe 7148
cmap 7439
cfsupp 7849 ccnf 8099 |
This theorem is referenced by: infxpenc 8416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |