![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oef1oOLD | Unicode version |
Description: A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption can be discharged using fveqf1o 6205.) (Contributed by Mario Carneiro, 30-May-2015.) Obsolete version of oef1o 8162 as of 3-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
oef1oOLD.f | |
oef1oOLD.g | |
oef1oOLD.a | |
oef1oOLD.b | |
oef1oOLD.c | |
oef1oOLD.d | |
oef1oOLD.z | |
oef1oOLD.k | |
oef1oOLD.h |
Ref | Expression |
---|---|
oef1oOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . . . 5 | |
2 | oef1oOLD.c | . . . . 5 | |
3 | oef1oOLD.d | . . . . 5 | |
4 | 1, 2, 3 | cantnff1o 8158 | . . . 4 |
5 | df1o2 7161 | . . . . . . . . . . . . 13 | |
6 | 5 | difeq2i 3618 | . . . . . . . . . . . 12 |
7 | 6 | imaeq2i 5340 | . . . . . . . . . . 11 |
8 | 7 | eleq1i 2534 | . . . . . . . . . 10 |
9 | 8 | a1i 11 | . . . . . . . . 9 |
10 | 9 | rabbiia 3098 | . . . . . . . 8 |
11 | eqid 2457 | . . . . . . . 8 | |
12 | eqid 2457 | . . . . . . . 8 | |
13 | oef1oOLD.g | . . . . . . . . 9 | |
14 | f1ocnv 5833 | . . . . . . . . 9 | |
15 | 13, 14 | syl 16 | . . . . . . . 8 |
16 | oef1oOLD.f | . . . . . . . 8 | |
17 | ssv 3523 | . . . . . . . . 9 | |
18 | oef1oOLD.b | . . . . . . . . 9 | |
19 | 17, 18 | sseldi 3501 | . . . . . . . 8 |
20 | oef1oOLD.a | . . . . . . . . . 10 | |
21 | 20 | eldifad 3487 | . . . . . . . . 9 |
22 | 17, 21 | sseldi 3501 | . . . . . . . 8 |
23 | 17, 3 | sseldi 3501 | . . . . . . . 8 |
24 | 17, 2 | sseldi 3501 | . . . . . . . 8 |
25 | ondif1 7170 | . . . . . . . . . 10 | |
26 | 25 | simprbi 464 | . . . . . . . . 9 |
27 | 20, 26 | syl 16 | . . . . . . . 8 |
28 | 10, 11, 12, 15, 16, 19, 22, 23, 24, 27 | mapfienOLD 8159 | . . . . . . 7 |
29 | oef1oOLD.k | . . . . . . . 8 | |
30 | f1oeq1 5812 | . . . . . . . 8 | |
31 | 29, 30 | ax-mp 5 | . . . . . . 7 |
32 | 28, 31 | sylibr 212 | . . . . . 6 |
33 | eqid 2457 | . . . . . . . . 9 | |
34 | 33, 2, 3 | cantnfdmOLD 8104 | . . . . . . . 8 |
35 | oef1oOLD.z | . . . . . . . . . . . . . 14 | |
36 | 35 | sneqd 4041 | . . . . . . . . . . . . 13 |
37 | 36, 5 | syl6eqr 2516 | . . . . . . . . . . . 12 |
38 | 37 | difeq2d 3621 | . . . . . . . . . . 11 |
39 | 38 | imaeq2d 5342 | . . . . . . . . . 10 |
40 | 39 | eleq1d 2526 | . . . . . . . . 9 |
41 | 40 | rabbidv 3101 | . . . . . . . 8 |
42 | 34, 41 | eqtr4d 2501 | . . . . . . 7 |
43 | f1oeq3 5814 | . . . . . . 7 | |
44 | 42, 43 | syl 16 | . . . . . 6 |
45 | 32, 44 | mpbird 232 | . . . . 5 |
46 | eqid 2457 | . . . . . . 7 | |
47 | 46, 21, 18 | cantnfdmOLD 8104 | . . . . . 6 |
48 | f1oeq2 5813 | . . . . . 6 | |
49 | 47, 48 | syl 16 | . . . . 5 |
50 | 45, 49 | mpbird 232 | . . . 4 |
51 | f1oco 5843 | . . . 4 | |
52 | 4, 50, 51 | syl2anc 661 | . . 3 |
53 | eqid 2457 | . . . . 5 | |
54 | 53, 21, 18 | cantnff1o 8158 | . . . 4 |
55 | f1ocnv 5833 | . . . 4 | |
56 | 54, 55 | syl 16 | . . 3 |
57 | f1oco 5843 | . . 3 | |
58 | 52, 56, 57 | syl2anc 661 | . 2 |
59 | oef1oOLD.h | . . 3 | |
60 | f1oeq1 5812 | . . 3 | |
61 | 59, 60 | ax-mp 5 | . 2 |
62 | 58, 61 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 { crab 2811
cvv 3109
\ cdif 3472 c0 3784 { csn 4029 e. cmpt 4510
con0 4883 `' ccnv 5003 dom cdm 5004
" cima 5007 o. ccom 5008 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
c1o 7142
coe 7148
cmap 7439
cfn 7536 ccnf 8099 |
This theorem is referenced by: infxpencOLD 8421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |