![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oelimcl | Unicode version |
Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
oelimcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3625 | . . . 4 | |
2 | limelon 4946 | . . . 4 | |
3 | oecl 7206 | . . . 4 | |
4 | 1, 2, 3 | syl2an 477 | . . 3 |
5 | eloni 4893 | . . 3 | |
6 | 4, 5 | syl 16 | . 2 |
7 | 1 | adantr 465 | . . 3 |
8 | 2 | adantl 466 | . . 3 |
9 | dif20el 7174 | . . . 4 | |
10 | 9 | adantr 465 | . . 3 |
11 | oen0 7254 | . . 3 | |
12 | 7, 8, 10, 11 | syl21anc 1227 | . 2 |
13 | oelim2 7263 | . . . . . 6 | |
14 | 1, 13 | sylan 471 | . . . . 5 |
15 | 14 | eleq2d 2527 | . . . 4 |
16 | eliun 4335 | . . . . 5 | |
17 | eldifi 3625 | . . . . . . 7 | |
18 | 7 | adantr 465 | . . . . . . . . . . . 12 |
19 | 8 | adantr 465 | . . . . . . . . . . . . 13 |
20 | simprl 756 | . . . . . . . . . . . . 13 | |
21 | onelon 4908 | . . . . . . . . . . . . 13 | |
22 | 19, 20, 21 | syl2anc 661 | . . . . . . . . . . . 12 |
23 | oecl 7206 | . . . . . . . . . . . 12 | |
24 | 18, 22, 23 | syl2anc 661 | . . . . . . . . . . 11 |
25 | eloni 4893 | . . . . . . . . . . 11 | |
26 | 24, 25 | syl 16 | . . . . . . . . . 10 |
27 | simprr 757 | . . . . . . . . . 10 | |
28 | ordsucss 6653 | . . . . . . . . . 10 | |
29 | 26, 27, 28 | sylc 60 | . . . . . . . . 9 |
30 | simpll 753 | . . . . . . . . . . 11 | |
31 | oeordi 7255 | . . . . . . . . . . 11 | |
32 | 19, 30, 31 | syl2anc 661 | . . . . . . . . . 10 |
33 | 20, 32 | mpd 15 | . . . . . . . . 9 |
34 | onelon 4908 | . . . . . . . . . . . 12 | |
35 | 24, 27, 34 | syl2anc 661 | . . . . . . . . . . 11 |
36 | suceloni 6648 | . . . . . . . . . . 11 | |
37 | 35, 36 | syl 16 | . . . . . . . . . 10 |
38 | 4 | adantr 465 | . . . . . . . . . 10 |
39 | ontr2 4930 | . . . . . . . . . 10 | |
40 | 37, 38, 39 | syl2anc 661 | . . . . . . . . 9 |
41 | 29, 33, 40 | mp2and 679 | . . . . . . . 8 |
42 | 41 | expr 615 | . . . . . . 7 |
43 | 17, 42 | sylan2 474 | . . . . . 6 |
44 | 43 | rexlimdva 2949 | . . . . 5 |
45 | 16, 44 | syl5bi 217 | . . . 4 |
46 | 15, 45 | sylbid 215 | . . 3 |
47 | 46 | ralrimiv 2869 | . 2 |
48 | dflim4 6683 | . 2 | |
49 | 6, 12, 47, 48 | syl3anbrc 1180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
E. wrex 2808 \ cdif 3472 C_ wss 3475
c0 3784 U_ ciun 4330 Ord word 4882
con0 4883 Lim wlim 4884 suc csuc 4885
(class class class)co 6296 c1o 7142
c2o 7143
coe 7148 |
This theorem is referenced by: oaabs2 7313 omabs 7315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 |
Copyright terms: Public domain | W3C validator |