![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oemapweOLD | Unicode version |
Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternative definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015.) Obsolete version of oemapwe 8134 as of 2-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cantnfsOLD.1 | |
cantnfsOLD.2 | |
cantnfsOLD.3 | |
oemapvalOLD.t |
Ref | Expression |
---|---|
oemapweOLD |
S
,, ,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfsOLD.2 | . . . . 5 | |
2 | cantnfsOLD.3 | . . . . 5 | |
3 | oecl 7206 | . . . . 5 | |
4 | 1, 2, 3 | syl2anc 661 | . . . 4 |
5 | eloni 4893 | . . . 4 | |
6 | ordwe 4896 | . . . 4 | |
7 | 4, 5, 6 | 3syl 20 | . . 3 |
8 | cantnfsOLD.1 | . . . . 5 | |
9 | oemapvalOLD.t | . . . . 5 | |
10 | 8, 1, 2, 9 | cantnfOLD 8155 | . . . 4 |
11 | isowe 6245 | . . . 4 | |
12 | 10, 11 | syl 16 | . . 3 |
13 | 7, 12 | mpbird 232 | . 2 |
14 | 4, 5 | syl 16 | . . . . 5 |
15 | isocnv 6226 | . . . . . 6 | |
16 | 10, 15 | syl 16 | . . . . 5 |
17 | ovex 6324 | . . . . . . . . 9 | |
18 | 17 | dmex 6733 | . . . . . . . 8 |
19 | 8, 18 | eqeltri 2541 | . . . . . . 7 |
20 | exse 4848 | . . . . . . 7 | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 |
22 | eqid 2457 | . . . . . . 7 | |
23 | 22 | oieu 7985 | . . . . . 6 |
24 | 13, 21, 23 | sylancl 662 | . . . . 5 |
25 | 14, 16, 24 | mpbi2and 921 | . . . 4 |
26 | 25 | simpld 459 | . . 3 |
27 | 26 | eqcomd 2465 | . 2 |
28 | 13, 27 | jca 532 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 cvv 3109
{ copab 4509 cep 4794
Se wse 4841 We wwe 4842 Ord word 4882
con0 4883 `' ccnv 5003 dom cdm 5004
` cfv 5593 Isom wiso 5594 (class class class)co 6296
coe 7148
OrdIso coi 7955
ccnf 8099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |