![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oeoe | Unicode version |
Description: Product of exponents law for ordinal exponentiation. Theorem 8S of [Enderton] p. 238. Also Proposition 8.42 of [TakeutiZaring] p. 70. (Contributed by Eric Schmidt, 26-May-2009.) |
Ref | Expression |
---|---|
oeoe |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6304 | . . . . . . . . . . . 12 | |
2 | oe0m0 7189 | . . . . . . . . . . . 12 | |
3 | 1, 2 | syl6eq 2514 | . . . . . . . . . . 11 |
4 | 3 | oveq1d 6311 | . . . . . . . . . 10 |
5 | oe1m 7213 | . . . . . . . . . 10 | |
6 | 4, 5 | sylan9eqr 2520 | . . . . . . . . 9 |
7 | 6 | adantll 713 | . . . . . . . 8 |
8 | oveq2 6304 | . . . . . . . . . 10 | |
9 | 0elon 4936 | . . . . . . . . . . . 12 | |
10 | oecl 7206 | . . . . . . . . . . . 12 | |
11 | 9, 10 | mpan 670 | . . . . . . . . . . 11 |
12 | oe0 7191 | . . . . . . . . . . 11 | |
13 | 11, 12 | syl 16 | . . . . . . . . . 10 |
14 | 8, 13 | sylan9eqr 2520 | . . . . . . . . 9 |
15 | 14 | adantlr 714 | . . . . . . . 8 |
16 | 7, 15 | jaodan 785 | . . . . . . 7 |
17 | om00 7243 | . . . . . . . . . 10 | |
18 | 17 | biimpar 485 | . . . . . . . . 9 |
19 | 18 | oveq2d 6312 | . . . . . . . 8 |
20 | 19, 2 | syl6eq 2514 | . . . . . . 7 |
21 | 16, 20 | eqtr4d 2501 | . . . . . 6 |
22 | on0eln0 4938 | . . . . . . . . . 10 | |
23 | on0eln0 4938 | . . . . . . . . . 10 | |
24 | 22, 23 | bi2anan9 873 | . . . . . . . . 9 |
25 | neanior 2782 | . . . . . . . . 9 | |
26 | 24, 25 | syl6bb 261 | . . . . . . . 8 |
27 | oe0m1 7190 | . . . . . . . . . . . . . 14 | |
28 | 27 | biimpa 484 | . . . . . . . . . . . . 13 |
29 | 28 | oveq1d 6311 | . . . . . . . . . . . 12 |
30 | oe0m1 7190 | . . . . . . . . . . . . 13 | |
31 | 30 | biimpa 484 | . . . . . . . . . . . 12 |
32 | 29, 31 | sylan9eq 2518 | . . . . . . . . . . 11 |
33 | 32 | an4s 826 | . . . . . . . . . 10 |
34 | om00el 7244 | . . . . . . . . . . . 12 | |
35 | omcl 7205 | . . . . . . . . . . . . 13 | |
36 | oe0m1 7190 | . . . . . . . . . . . . 13 | |
37 | 35, 36 | syl 16 | . . . . . . . . . . . 12 |
38 | 34, 37 | bitr3d 255 | . . . . . . . . . . 11 |
39 | 38 | biimpa 484 | . . . . . . . . . 10 |
40 | 33, 39 | eqtr4d 2501 | . . . . . . . . 9 |
41 | 40 | ex 434 | . . . . . . . 8 |
42 | 26, 41 | sylbird 235 | . . . . . . 7 |
43 | 42 | imp 429 | . . . . . 6 |
44 | 21, 43 | pm2.61dan 791 | . . . . 5 |
45 | oveq1 6303 | . . . . . . 7 | |
46 | 45 | oveq1d 6311 | . . . . . 6 |
47 | oveq1 6303 | . . . . . 6 | |
48 | 46, 47 | eqeq12d 2479 | . . . . 5 |
49 | 44, 48 | syl5ibr 221 | . . . 4 |
50 | 49 | impcom 430 | . . 3 |
51 | oveq1 6303 | . . . . . . . . 9 | |
52 | 51 | oveq1d 6311 | . . . . . . . 8 |
53 | oveq1 6303 | . . . . . . . 8 | |
54 | 52, 53 | eqeq12d 2479 | . . . . . . 7 |
55 | 54 | imbi2d 316 | . . . . . 6 |
56 | eleq1 2529 | . . . . . . . . . 10 | |
57 | eleq2 2530 | . . . . . . . . . 10 | |
58 | 56, 57 | anbi12d 710 | . . . . . . . . 9 |
59 | eleq1 2529 | . . . . . . . . . 10 | |
60 | eleq2 2530 | . . . . . . . . . 10 | |
61 | 59, 60 | anbi12d 710 | . . . . . . . . 9 |
62 | 1on 7156 | . . . . . . . . . 10 | |
63 | 0lt1o 7173 | . . . . . . . . . 10 | |
64 | 62, 63 | pm3.2i 455 | . . . . . . . . 9 |
65 | 58, 61, 64 | elimhyp 4000 | . . . . . . . 8 |
66 | 65 | simpli 458 | . . . . . . 7 |
67 | 65 | simpri 462 | . . . . . . 7 |
68 | 66, 67 | oeoelem 7266 | . . . . . 6 |
69 | 55, 68 | dedth 3993 | . . . . 5 |
70 | 69 | imp 429 | . . . 4 |
71 | 70 | an32s 804 | . . 3 |
72 | 50, 71 | oe0lem 7182 | . 2 |
73 | 72 | 3impb 1192 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 c0 3784 if cif 3941 con0 4883 (class class class)co 6296
c1o 7142
comu 7147
coe 7148 |
This theorem is referenced by: infxpenc 8416 infxpencOLD 8421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 |
Copyright terms: Public domain | W3C validator |