![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oeoelem | Unicode version |
Description: Lemma for oeoe 7267. (Contributed by Eric Schmidt, 26-May-2009.) |
Ref | Expression |
---|---|
oeoelem.1 | |
oeoelem.2 |
Ref | Expression |
---|---|
oeoelem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6304 | . . . 4 | |
2 | oveq2 6304 | . . . . 5 | |
3 | 2 | oveq2d 6312 | . . . 4 |
4 | 1, 3 | eqeq12d 2479 | . . 3 |
5 | oveq2 6304 | . . . 4 | |
6 | oveq2 6304 | . . . . 5 | |
7 | 6 | oveq2d 6312 | . . . 4 |
8 | 5, 7 | eqeq12d 2479 | . . 3 |
9 | oveq2 6304 | . . . 4 | |
10 | oveq2 6304 | . . . . 5 | |
11 | 10 | oveq2d 6312 | . . . 4 |
12 | 9, 11 | eqeq12d 2479 | . . 3 |
13 | oveq2 6304 | . . . 4 | |
14 | oveq2 6304 | . . . . 5 | |
15 | 14 | oveq2d 6312 | . . . 4 |
16 | 13, 15 | eqeq12d 2479 | . . 3 |
17 | oeoelem.1 | . . . . . 6 | |
18 | oecl 7206 | . . . . . 6 | |
19 | 17, 18 | mpan 670 | . . . . 5 |
20 | oe0 7191 | . . . . 5 | |
21 | 19, 20 | syl 16 | . . . 4 |
22 | om0 7186 | . . . . . 6 | |
23 | 22 | oveq2d 6312 | . . . . 5 |
24 | oe0 7191 | . . . . . 6 | |
25 | 17, 24 | ax-mp 5 | . . . . 5 |
26 | 23, 25 | syl6eq 2514 | . . . 4 |
27 | 21, 26 | eqtr4d 2501 | . . 3 |
28 | oveq1 6303 | . . . . 5 | |
29 | oesuc 7196 | . . . . . . 7 | |
30 | 19, 29 | sylan 471 | . . . . . 6 |
31 | omsuc 7195 | . . . . . . . 8 | |
32 | 31 | oveq2d 6312 | . . . . . . 7 |
33 | omcl 7205 | . . . . . . . . 9 | |
34 | oeoa 7265 | . . . . . . . . . 10 | |
35 | 17, 34 | mp3an1 1311 | . . . . . . . . 9 |
36 | 33, 35 | sylan 471 | . . . . . . . 8 |
37 | 36 | anabss1 814 | . . . . . . 7 |
38 | 32, 37 | eqtrd 2498 | . . . . . 6 |
39 | 30, 38 | eqeq12d 2479 | . . . . 5 |
40 | 28, 39 | syl5ibr 221 | . . . 4 |
41 | 40 | expcom 435 | . . 3 |
42 | iuneq2 4347 | . . . . 5 | |
43 | vex 3112 | . . . . . . 7 | |
44 | oeoelem.2 | . . . . . . . . . . 11 | |
45 | oen0 7254 | . . . . . . . . . . 11 | |
46 | 44, 45 | mpan2 671 | . . . . . . . . . 10 |
47 | oelim 7203 | . . . . . . . . . . 11 | |
48 | 18, 47 | sylanl1 650 | . . . . . . . . . 10 |
49 | 46, 48 | sylan2 474 | . . . . . . . . 9 |
50 | 49 | anabss1 814 | . . . . . . . 8 |
51 | 17, 50 | mpanl1 680 | . . . . . . 7 |
52 | 43, 51 | mpanr1 683 | . . . . . 6 |
53 | omlim 7202 | . . . . . . . . 9 | |
54 | 43, 53 | mpanr1 683 | . . . . . . . 8 |
55 | 54 | oveq2d 6312 | . . . . . . 7 |
56 | 43 | a1i 11 | . . . . . . . 8 |
57 | limord 4942 | . . . . . . . . . . . 12 | |
58 | ordelon 4907 | . . . . . . . . . . . 12 | |
59 | 57, 58 | sylan 471 | . . . . . . . . . . 11 |
60 | 59, 33 | sylan2 474 | . . . . . . . . . 10 |
61 | 60 | anassrs 648 | . . . . . . . . 9 |
62 | 61 | ralrimiva 2871 | . . . . . . . 8 |
63 | 0ellim 4945 | . . . . . . . . . 10 | |
64 | ne0i 3790 | . . . . . . . . . 10 | |
65 | 63, 64 | syl 16 | . . . . . . . . 9 |
66 | 65 | adantl 466 | . . . . . . . 8 |
67 | vex 3112 | . . . . . . . . . 10 | |
68 | oelim 7203 | . . . . . . . . . . . 12 | |
69 | 44, 68 | mpan2 671 | . . . . . . . . . . 11 |
70 | 17, 69 | mpan 670 | . . . . . . . . . 10 |
71 | 67, 70 | mpan 670 | . . . . . . . . 9 |
72 | oewordi 7259 | . . . . . . . . . . . 12 | |
73 | 44, 72 | mpan2 671 | . . . . . . . . . . 11 |
74 | 17, 73 | mp3an3 1313 | . . . . . . . . . 10 |
75 | 74 | 3impia 1193 | . . . . . . . . 9 |
76 | 71, 75 | onoviun 7033 | . . . . . . . 8 |
77 | 56, 62, 66, 76 | syl3anc 1228 | . . . . . . 7 |
78 | 55, 77 | eqtrd 2498 | . . . . . 6 |
79 | 52, 78 | eqeq12d 2479 | . . . . 5 |
80 | 42, 79 | syl5ibr 221 | . . . 4 |
81 | 80 | expcom 435 | . . 3 |
82 | 4, 8, 12, 16, 27, 41, 81 | tfinds3 6699 | . 2 |
83 | 82 | impcom 430 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 cvv 3109
C_ wss 3475 c0 3784 U_ ciun 4330 Ord word 4882
con0 4883 Lim wlim 4884 suc csuc 4885
(class class class)co 6296 c1o 7142
coa 7146
comu 7147
coe 7148 |
This theorem is referenced by: oeoe 7267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 |
Copyright terms: Public domain | W3C validator |