![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oeordsuc | Unicode version |
Description: Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) |
Ref | Expression |
---|---|
oeordsuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelon 4908 | . . . 4 | |
2 | 1 | ex 434 | . . 3 |
3 | 2 | adantr 465 | . 2 |
4 | oewordri 7260 | . . . . . . . . . . 11 | |
5 | 4 | 3adant1 1014 | . . . . . . . . . 10 |
6 | oecl 7206 | . . . . . . . . . . . 12 | |
7 | 6 | 3adant2 1015 | . . . . . . . . . . 11 |
8 | oecl 7206 | . . . . . . . . . . . 12 | |
9 | 8 | 3adant1 1014 | . . . . . . . . . . 11 |
10 | simp1 996 | . . . . . . . . . . 11 | |
11 | omwordri 7240 | . . . . . . . . . . 11 | |
12 | 7, 9, 10, 11 | syl3anc 1228 | . . . . . . . . . 10 |
13 | 5, 12 | syld 44 | . . . . . . . . 9 |
14 | oesuc 7196 | . . . . . . . . . . 11 | |
15 | 14 | 3adant2 1015 | . . . . . . . . . 10 |
16 | 15 | sseq1d 3530 | . . . . . . . . 9 |
17 | 13, 16 | sylibrd 234 | . . . . . . . 8 |
18 | ne0i 3790 | . . . . . . . . . . . . . 14 | |
19 | on0eln0 4938 | . . . . . . . . . . . . . 14 | |
20 | 18, 19 | syl5ibr 221 | . . . . . . . . . . . . 13 |
21 | 20 | adantr 465 | . . . . . . . . . . . 12 |
22 | oen0 7254 | . . . . . . . . . . . . 13 | |
23 | 22 | ex 434 | . . . . . . . . . . . 12 |
24 | 21, 23 | syld 44 | . . . . . . . . . . 11 |
25 | simpl 457 | . . . . . . . . . . . . . . 15 | |
26 | 25, 8 | jca 532 | . . . . . . . . . . . . . 14 |
27 | omordi 7234 | . . . . . . . . . . . . . 14 | |
28 | 26, 27 | sylan 471 | . . . . . . . . . . . . 13 |
29 | 28 | ex 434 | . . . . . . . . . . . 12 |
30 | 29 | com23 78 | . . . . . . . . . . 11 |
31 | 24, 30 | mpdd 40 | . . . . . . . . . 10 |
32 | 31 | 3adant1 1014 | . . . . . . . . 9 |
33 | oesuc 7196 | . . . . . . . . . . 11 | |
34 | 33 | 3adant1 1014 | . . . . . . . . . 10 |
35 | 34 | eleq2d 2527 | . . . . . . . . 9 |
36 | 32, 35 | sylibrd 234 | . . . . . . . 8 |
37 | 17, 36 | jcad 533 | . . . . . . 7 |
38 | 37 | 3expa 1196 | . . . . . 6 |
39 | sucelon 6652 | . . . . . . 7 | |
40 | oecl 7206 | . . . . . . . . 9 | |
41 | oecl 7206 | . . . . . . . . 9 | |
42 | ontr2 4930 | . . . . . . . . 9 | |
43 | 40, 41, 42 | syl2an 477 | . . . . . . . 8 |
44 | 43 | anandirs 831 | . . . . . . 7 |
45 | 39, 44 | sylan2b 475 | . . . . . 6 |
46 | 38, 45 | syld 44 | . . . . 5 |
47 | 46 | exp31 604 | . . . 4 |
48 | 47 | com4l 84 | . . 3 |
49 | 48 | imp 429 | . 2 |
50 | 3, 49 | mpdd 40 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 C_ wss 3475 c0 3784 con0 4883 suc csuc 4885 (class class class)co 6296
comu 7147
coe 7148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-oexp 7155 |
Copyright terms: Public domain | W3C validator |