![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oeworde | Unicode version |
Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
Ref | Expression |
---|---|
oeworde |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 | |
2 | oveq2 6304 | . . . 4 | |
3 | 1, 2 | sseq12d 3532 | . . 3 |
4 | id 22 | . . . 4 | |
5 | oveq2 6304 | . . . 4 | |
6 | 4, 5 | sseq12d 3532 | . . 3 |
7 | id 22 | . . . 4 | |
8 | oveq2 6304 | . . . 4 | |
9 | 7, 8 | sseq12d 3532 | . . 3 |
10 | id 22 | . . . 4 | |
11 | oveq2 6304 | . . . 4 | |
12 | 10, 11 | sseq12d 3532 | . . 3 |
13 | 0ss 3814 | . . . 4 | |
14 | 13 | a1i 11 | . . 3 |
15 | eloni 4893 | . . . . . . 7 | |
16 | 15 | adantl 466 | . . . . . 6 |
17 | eldifi 3625 | . . . . . . . 8 | |
18 | oecl 7206 | . . . . . . . 8 | |
19 | 17, 18 | sylan 471 | . . . . . . 7 |
20 | eloni 4893 | . . . . . . 7 | |
21 | 19, 20 | syl 16 | . . . . . 6 |
22 | ordsucsssuc 6658 | . . . . . 6 | |
23 | 16, 21, 22 | syl2anc 661 | . . . . 5 |
24 | suceloni 6648 | . . . . . . . . 9 | |
25 | oecl 7206 | . . . . . . . . 9 | |
26 | 17, 24, 25 | syl2an 477 | . . . . . . . 8 |
27 | eloni 4893 | . . . . . . . 8 | |
28 | 26, 27 | syl 16 | . . . . . . 7 |
29 | id 22 | . . . . . . . 8 | |
30 | vex 3112 | . . . . . . . . . 10 | |
31 | 30 | sucid 4962 | . . . . . . . . 9 |
32 | oeordi 7255 | . . . . . . . . 9 | |
33 | 31, 32 | mpi 17 | . . . . . . . 8 |
34 | 24, 29, 33 | syl2anr 478 | . . . . . . 7 |
35 | ordsucss 6653 | . . . . . . 7 | |
36 | 28, 34, 35 | sylc 60 | . . . . . 6 |
37 | sstr2 3510 | . . . . . 6 | |
38 | 36, 37 | syl5com 30 | . . . . 5 |
39 | 23, 38 | sylbid 215 | . . . 4 |
40 | 39 | expcom 435 | . . 3 |
41 | dif20el 7174 | . . . . 5 | |
42 | 17, 41 | jca 532 | . . . 4 |
43 | ss2iun 4346 | . . . . . 6 | |
44 | limuni 4943 | . . . . . . . . 9 | |
45 | uniiun 4383 | . . . . . . . . 9 | |
46 | 44, 45 | syl6eq 2514 | . . . . . . . 8 |
47 | 46 | adantr 465 | . . . . . . 7 |
48 | vex 3112 | . . . . . . . . . 10 | |
49 | oelim 7203 | . . . . . . . . . 10 | |
50 | 48, 49 | mpanlr1 686 | . . . . . . . . 9 |
51 | 50 | anasss 647 | . . . . . . . 8 |
52 | 51 | an12s 801 | . . . . . . 7 |
53 | 47, 52 | sseq12d 3532 | . . . . . 6 |
54 | 43, 53 | syl5ibr 221 | . . . . 5 |
55 | 54 | ex 434 | . . . 4 |
56 | 42, 55 | syl5 32 | . . 3 |
57 | 3, 6, 9, 12, 14, 40, 56 | tfinds3 6699 | . 2 |
58 | 57 | impcom 430 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 cvv 3109
\ cdif 3472 C_ wss 3475 c0 3784 U. cuni 4249 U_ ciun 4330
Ord word 4882
con0 4883 Lim wlim 4884 suc csuc 4885
(class class class)co 6296 c2o 7143
coe 7148 |
This theorem is referenced by: oeeulem 7269 cnfcom3clem 8170 cnfcom3clemOLD 8178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 |
Copyright terms: Public domain | W3C validator |