![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ofco | Unicode version |
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.) |
Ref | Expression |
---|---|
ofco.1 | |
ofco.2 | |
ofco.3 | |
ofco.4 | |
ofco.5 | |
ofco.6 | |
ofco.7 |
Ref | Expression |
---|---|
ofco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofco.3 | . . . 4 | |
2 | 1 | ffvelrnda 6031 | . . 3 |
3 | 1 | feqmptd 5926 | . . 3 |
4 | ofco.1 | . . . 4 | |
5 | ofco.2 | . . . 4 | |
6 | ofco.4 | . . . 4 | |
7 | ofco.5 | . . . 4 | |
8 | ofco.7 | . . . 4 | |
9 | eqidd 2458 | . . . 4 | |
10 | eqidd 2458 | . . . 4 | |
11 | 4, 5, 6, 7, 8, 9, 10 | offval 6547 | . . 3 |
12 | fveq2 5871 | . . . 4 | |
13 | fveq2 5871 | . . . 4 | |
14 | 12, 13 | oveq12d 6314 | . . 3 |
15 | 2, 3, 11, 14 | fmptco 6064 | . 2 |
16 | inss1 3717 | . . . . . 6 | |
17 | 8, 16 | eqsstr3i 3534 | . . . . 5 |
18 | fss 5744 | . . . . 5 | |
19 | 1, 17, 18 | sylancl 662 | . . . 4 |
20 | fnfco 5755 | . . . 4 | |
21 | 4, 19, 20 | syl2anc 661 | . . 3 |
22 | inss2 3718 | . . . . . 6 | |
23 | 8, 22 | eqsstr3i 3534 | . . . . 5 |
24 | fss 5744 | . . . . 5 | |
25 | 1, 23, 24 | sylancl 662 | . . . 4 |
26 | fnfco 5755 | . . . 4 | |
27 | 5, 25, 26 | syl2anc 661 | . . 3 |
28 | ofco.6 | . . 3 | |
29 | inidm 3706 | . . 3 | |
30 | ffn 5736 | . . . . 5 | |
31 | 1, 30 | syl 16 | . . . 4 |
32 | fvco2 5948 | . . . 4 | |
33 | 31, 32 | sylan 471 | . . 3 |
34 | fvco2 5948 | . . . 4 | |
35 | 31, 34 | sylan 471 | . . 3 |
36 | 21, 27, 28, 28, 29, 33, 35 | offval 6547 | . 2 |
37 | 15, 36 | eqtr4d 2501 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 i^i cin 3474
C_ wss 3475 e. cmpt 4510 o. ccom 5008
Fn wfn 5588 --> wf 5589 ` cfv 5593
(class class class)co 6296 oF cof 6538 |
This theorem is referenced by: gsumzaddlem 16934 gsumzaddlemOLD 16936 coe1add 18305 pf1ind 18391 mendring 31141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-of 6540 |
Copyright terms: Public domain | W3C validator |