![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ofmres | Unicode version |
Description: Equivalent expressions
for a restriction of the function operation map.
Unlike which is a proper class, ( oF | ` ( A X. ) )
can be a set by ofmresex 6797, allowing it to be used as a function or
structure argument. By ofmresval 6552, the restricted operation map
values are the same as the original values, allowing theorems for
to be
reused. (Contributed by NM, 20-Oct-2014.) |
Ref | Expression |
---|---|
ofmres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3523 | . . 3 | |
2 | ssv 3523 | . . 3 | |
3 | resmpt2 6400 | . . 3 | |
4 | 1, 2, 3 | mp2an 672 | . 2 |
5 | df-of 6540 | . . 3 | |
6 | 5 | reseq1i 5274 | . 2 |
7 | eqid 2457 | . . 3 | |
8 | eqid 2457 | . . 3 | |
9 | vex 3112 | . . . 4 | |
10 | vex 3112 | . . . 4 | |
11 | 9 | dmex 6733 | . . . . . 6 |
12 | 11 | inex1 4593 | . . . . 5 |
13 | 12 | mptex 6143 | . . . 4 |
14 | 5 | ovmpt4g 6425 | . . . 4 |
15 | 9, 10, 13, 14 | mp3an 1324 | . . 3 |
16 | 7, 8, 15 | mpt2eq123i 6360 | . 2 |
17 | 4, 6, 16 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
cvv 3109
i^i cin 3474 C_ wss 3475 e. cmpt 4510
X. cxp 5002 dom cdm 5004 |` cres 5006
` cfv 5593 (class class class)co 6296
e. cmpt2 6298 oF cof 6538 |
This theorem is referenced by: mplsubrglem 18100 mplsubrglemOLD 18101 psrplusgpropd 18277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-of 6540 |
Copyright terms: Public domain | W3C validator |