![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oiid | Unicode version |
Description: The order type of an
ordinal under the e. order is itself, and the
order isomorphism is the identity function. (Contributed by Mario
Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
oiid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordwe 4896 | . 2 | |
2 | epse 4867 | . . 3 | |
3 | 2 | a1i 11 | . 2 |
4 | eqid 2457 | . . . . . 6 | |
5 | 4 | oiiso2 7977 | . . . . 5 |
6 | 1, 2, 5 | sylancl 662 | . . . 4 |
7 | ordsson 6625 | . . . . . . 7 | |
8 | 4 | oismo 7986 | . . . . . . 7 |
9 | 7, 8 | syl 16 | . . . . . 6 |
10 | 9 | simprd 463 | . . . . 5 |
11 | isoeq5 6219 | . . . . 5 | |
12 | 10, 11 | syl 16 | . . . 4 |
13 | 6, 12 | mpbid 210 | . . 3 |
14 | 4 | oicl 7975 | . . . . . 6 |
15 | 14 | a1i 11 | . . . . 5 |
16 | id 22 | . . . . 5 | |
17 | ordiso2 7961 | . . . . 5 | |
18 | 13, 15, 16, 17 | syl3anc 1228 | . . . 4 |
19 | isoeq4 6218 | . . . 4 | |
20 | 18, 19 | syl 16 | . . 3 |
21 | 13, 20 | mpbid 210 | . 2 |
22 | weniso 6250 | . 2 | |
23 | 1, 3, 21, 22 | syl3anc 1228 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 C_ wss 3475
cep 4794
cid 4795
Se wse 4841 We wwe 4842 Ord word 4882
con0 4883 dom cdm 5004 ran crn 5005
|` cres 5006 Isom wiso 5594 Smo wsmo 7035
OrdIso coi 7955 |
This theorem is referenced by: hsmexlem5 8831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-smo 7036 df-recs 7061 df-oi 7956 |
Copyright terms: Public domain | W3C validator |