![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > olci | Unicode version |
Description: Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
Ref | Expression |
---|---|
orci.1 |
Ref | Expression |
---|---|
olci |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orci.1 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | 2 | orri 376 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 \/ wo 368 |
This theorem is referenced by: falortru 1425 sucidg 4961 kmlem2 8552 sornom 8678 leid 9701 xrleid 11385 xmul01 11488 bcn1 12391 odd2np1lem 14045 prmrec 14440 sratset 17830 srads 17832 m2detleib 19133 itg0 22186 itgz 22187 coemullem 22647 ftalem5 23350 chp1 23441 prmorcht 23452 pclogsum 23490 logexprlim 23500 bpos1 23558 pntpbnd1 23771 axlowdimlem16 24260 usgraexmpldifpr 24400 cusgrasizeindb1 24471 vdgrf 24898 ex-or 25142 plymulx0 28504 mblfinlem2 30052 volsupnfl 30059 lcm0val 31200 icccncfext 31690 fourierdlem103 31992 fourierdlem104 31993 etransclem24 32041 etransclem35 32052 abnotataxb 32112 dandysum2p2e4 32170 zlmodzxzldeplem 33099 aacllem 33216 bj-0eltag 34536 bj-inftyexpidisj 34613 bj-ifid2 37711 bj-ifim1 37712 bj-ifim2 37713 bj-ifim1g 37714 bj-ifnot 37717 bj-ifdfor 37722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-or 370 |
Copyright terms: Public domain | W3C validator |