![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > om2uzlti | Unicode version |
Description: Less-than relation for (see om2uz0i 12058). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | |
om2uz.2 |
Ref | Expression |
---|---|
om2uzlti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2530 | . . . . 5 | |
2 | fveq2 5871 | . . . . . 6 | |
3 | 2 | breq2d 4464 | . . . . 5 |
4 | 1, 3 | imbi12d 320 | . . . 4 |
5 | 4 | imbi2d 316 | . . 3 |
6 | eleq2 2530 | . . . . 5 | |
7 | fveq2 5871 | . . . . . 6 | |
8 | 7 | breq2d 4464 | . . . . 5 |
9 | 6, 8 | imbi12d 320 | . . . 4 |
10 | 9 | imbi2d 316 | . . 3 |
11 | eleq2 2530 | . . . . 5 | |
12 | fveq2 5871 | . . . . . 6 | |
13 | 12 | breq2d 4464 | . . . . 5 |
14 | 11, 13 | imbi12d 320 | . . . 4 |
15 | 14 | imbi2d 316 | . . 3 |
16 | eleq2 2530 | . . . . 5 | |
17 | fveq2 5871 | . . . . . 6 | |
18 | 17 | breq2d 4464 | . . . . 5 |
19 | 16, 18 | imbi12d 320 | . . . 4 |
20 | 19 | imbi2d 316 | . . 3 |
21 | noel 3788 | . . . . 5 | |
22 | 21 | pm2.21i 131 | . . . 4 |
23 | 22 | a1i 11 | . . 3 |
24 | id 22 | . . . . . . 7 | |
25 | fveq2 5871 | . . . . . . . 8 | |
26 | 25 | a1i 11 | . . . . . . 7 |
27 | 24, 26 | orim12d 838 | . . . . . 6 |
28 | elsuc2g 4951 | . . . . . . . . 9 | |
29 | 28 | bicomd 201 | . . . . . . . 8 |
30 | 29 | adantl 466 | . . . . . . 7 |
31 | om2uz.1 | . . . . . . . . . . 11 | |
32 | om2uz.2 | . . . . . . . . . . 11 | |
33 | 31, 32 | om2uzsuci 12059 | . . . . . . . . . 10 |
34 | 33 | breq2d 4464 | . . . . . . . . 9 |
35 | 34 | adantl 466 | . . . . . . . 8 |
36 | 31, 32 | om2uzuzi 12060 | . . . . . . . . 9 |
37 | 31, 32 | om2uzuzi 12060 | . . . . . . . . 9 |
38 | eluzelz 11119 | . . . . . . . . . 10 | |
39 | eluzelz 11119 | . . . . . . . . . 10 | |
40 | zleltp1 10939 | . . . . . . . . . 10 | |
41 | 38, 39, 40 | syl2an 477 | . . . . . . . . 9 |
42 | 36, 37, 41 | syl2an 477 | . . . . . . . 8 |
43 | 36, 38 | syl 16 | . . . . . . . . . 10 |
44 | 43 | zred 10994 | . . . . . . . . 9 |
45 | 37, 39 | syl 16 | . . . . . . . . . 10 |
46 | 45 | zred 10994 | . . . . . . . . 9 |
47 | leloe 9692 | . . . . . . . . 9 | |
48 | 44, 46, 47 | syl2an 477 | . . . . . . . 8 |
49 | 35, 42, 48 | 3bitr2rd 282 | . . . . . . 7 |
50 | 30, 49 | imbi12d 320 | . . . . . 6 |
51 | 27, 50 | syl5ib 219 | . . . . 5 |
52 | 51 | expcom 435 | . . . 4 |
53 | 52 | a2d 26 | . . 3 |
54 | 5, 10, 15, 20, 23, 53 | finds 6726 | . 2 |
55 | 54 | impcom 430 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 cvv 3109
c0 3784 class class class wbr 4452
e. cmpt 4510 suc csuc 4885 |` cres 5006
` cfv 5593 (class class class)co 6296
com 6700
rec crdg 7094
cr 9512 1 c1 9514 caddc 9516 clt 9649 cle 9650 cz 10889 cuz 11110 |
This theorem is referenced by: om2uzlt2i 12062 om2uzf1oi 12064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 |
Copyright terms: Public domain | W3C validator |