![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > omeu | Unicode version |
Description: The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013.) |
Ref | Expression |
---|---|
omeu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omeulem1 7250 | . . 3 | |
2 | opex 4716 | . . . . . . . . 9 | |
3 | 2 | isseti 3115 | . . . . . . . 8 |
4 | 19.41v 1771 | . . . . . . . 8 | |
5 | 3, 4 | mpbiran 918 | . . . . . . 7 |
6 | 5 | rexbii 2959 | . . . . . 6 |
7 | rexcom4 3129 | . . . . . 6 | |
8 | 6, 7 | bitr3i 251 | . . . . 5 |
9 | 8 | rexbii 2959 | . . . 4 |
10 | rexcom4 3129 | . . . 4 | |
11 | 9, 10 | bitri 249 | . . 3 |
12 | 1, 11 | sylib 196 | . 2 |
13 | simp2rl 1065 | . . . . . . . . . . 11 | |
14 | simp3rl 1069 | . . . . . . . . . . . 12 | |
15 | simp2rr 1066 | . . . . . . . . . . . . . . 15 | |
16 | simp3rr 1070 | . . . . . . . . . . . . . . 15 | |
17 | 15, 16 | eqtr4d 2501 | . . . . . . . . . . . . . 14 |
18 | simp11 1026 | . . . . . . . . . . . . . . 15 | |
19 | simp13 1028 | . . . . . . . . . . . . . . 15 | |
20 | simp2ll 1063 | . . . . . . . . . . . . . . 15 | |
21 | simp2lr 1064 | . . . . . . . . . . . . . . 15 | |
22 | simp3ll 1067 | . . . . . . . . . . . . . . 15 | |
23 | simp3lr 1068 | . . . . . . . . . . . . . . 15 | |
24 | omopth2 7252 | . . . . . . . . . . . . . . 15 | |
25 | 18, 19, 20, 21, 22, 23, 24 | syl222anc 1244 | . . . . . . . . . . . . . 14 |
26 | 17, 25 | mpbid 210 | . . . . . . . . . . . . 13 |
27 | opeq12 4219 | . . . . . . . . . . . . 13 | |
28 | 26, 27 | syl 16 | . . . . . . . . . . . 12 |
29 | 14, 28 | eqtr4d 2501 | . . . . . . . . . . 11 |
30 | 13, 29 | eqtr4d 2501 | . . . . . . . . . 10 |
31 | 30 | 3expia 1198 | . . . . . . . . 9 |
32 | 31 | exp4b 607 | . . . . . . . 8 |
33 | 32 | expd 436 | . . . . . . 7 |
34 | 33 | rexlimdvv 2955 | . . . . . 6 |
35 | 34 | imp 429 | . . . . 5 |
36 | 35 | rexlimdvv 2955 | . . . 4 |
37 | 36 | expimpd 603 | . . 3 |
38 | 37 | alrimivv 1720 | . 2 |
39 | opeq1 4217 | . . . . . . 7 | |
40 | 39 | eqeq2d 2471 | . . . . . 6 |
41 | oveq2 6304 | . . . . . . . 8 | |
42 | 41 | oveq1d 6311 | . . . . . . 7 |
43 | 42 | eqeq1d 2459 | . . . . . 6 |
44 | 40, 43 | anbi12d 710 | . . . . 5 |
45 | opeq2 4218 | . . . . . . 7 | |
46 | 45 | eqeq2d 2471 | . . . . . 6 |
47 | oveq2 6304 | . . . . . . 7 | |
48 | 47 | eqeq1d 2459 | . . . . . 6 |
49 | 46, 48 | anbi12d 710 | . . . . 5 |
50 | 44, 49 | cbvrex2v 3093 | . . . 4 |
51 | eqeq1 2461 | . . . . . 6 | |
52 | 51 | anbi1d 704 | . . . . 5 |
53 | 52 | 2rexbidv 2975 | . . . 4 |
54 | 50, 53 | syl5bb 257 | . . 3 |
55 | 54 | eu4 2338 | . 2 |
56 | 12, 38, 55 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 A. wal 1393
= wceq 1395 E. wex 1612 e. wcel 1818
E! weu 2282 =/= wne 2652 E. wrex 2808
c0 3784 <. cop 4035 con0 4883 (class class class)co 6296
coa 7146
comu 7147 |
This theorem is referenced by: oeeui 7270 omxpenlem 7638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 |
Copyright terms: Public domain | W3C validator |