![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > omeulem2 | Unicode version |
Description: Lemma for omeu 7253: uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
omeulem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1024 | . . . . . 6 | |
2 | eloni 4893 | . . . . . 6 | |
3 | ordsucss 6653 | . . . . . 6 | |
4 | 1, 2, 3 | 3syl 20 | . . . . 5 |
5 | simp2l 1022 | . . . . . . 7 | |
6 | suceloni 6648 | . . . . . . 7 | |
7 | 5, 6 | syl 16 | . . . . . 6 |
8 | simp1l 1020 | . . . . . 6 | |
9 | simp1r 1021 | . . . . . . 7 | |
10 | on0eln0 4938 | . . . . . . . 8 | |
11 | 8, 10 | syl 16 | . . . . . . 7 |
12 | 9, 11 | mpbird 232 | . . . . . 6 |
13 | omword 7238 | . . . . . 6 | |
14 | 7, 1, 8, 12, 13 | syl31anc 1231 | . . . . 5 |
15 | 4, 14 | sylibd 214 | . . . 4 |
16 | omcl 7205 | . . . . . 6 | |
17 | 8, 1, 16 | syl2anc 661 | . . . . 5 |
18 | simp3r 1025 | . . . . . 6 | |
19 | onelon 4908 | . . . . . 6 | |
20 | 8, 18, 19 | syl2anc 661 | . . . . 5 |
21 | oaword1 7220 | . . . . . 6 | |
22 | sstr 3511 | . . . . . . 7 | |
23 | 22 | expcom 435 | . . . . . 6 |
24 | 21, 23 | syl 16 | . . . . 5 |
25 | 17, 20, 24 | syl2anc 661 | . . . 4 |
26 | 15, 25 | syld 44 | . . 3 |
27 | simp2r 1023 | . . . . . 6 | |
28 | onelon 4908 | . . . . . 6 | |
29 | 8, 27, 28 | syl2anc 661 | . . . . 5 |
30 | omcl 7205 | . . . . . 6 | |
31 | 8, 5, 30 | syl2anc 661 | . . . . 5 |
32 | oaord 7215 | . . . . . 6 | |
33 | 32 | biimpa 484 | . . . . 5 |
34 | 29, 8, 31, 27, 33 | syl31anc 1231 | . . . 4 |
35 | omsuc 7195 | . . . . 5 | |
36 | 8, 5, 35 | syl2anc 661 | . . . 4 |
37 | 34, 36 | eleqtrrd 2548 | . . 3 |
38 | ssel 3497 | . . 3 | |
39 | 26, 37, 38 | syl6ci 65 | . 2 |
40 | simpr 461 | . . . . 5 | |
41 | oaord 7215 | . . . . 5 | |
42 | 40, 41 | syl5ib 219 | . . . 4 |
43 | oveq2 6304 | . . . . . . 7 | |
44 | 43 | oveq1d 6311 | . . . . . 6 |
45 | 44 | adantr 465 | . . . . 5 |
46 | 45 | eleq2d 2527 | . . . 4 |
47 | 42, 46 | mpbidi 216 | . . 3 |
48 | 29, 20, 31, 47 | syl3anc 1228 | . 2 |
49 | 39, 48 | jaod 380 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
C_ wss 3475 c0 3784 Ord word 4882 con0 4883 suc csuc 4885 (class class class)co 6296
coa 7146
comu 7147 |
This theorem is referenced by: omopth2 7252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-oadd 7153 df-omul 7154 |
Copyright terms: Public domain | W3C validator |