![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > omopthi | Unicode version |
Description: An ordered pair theorem for . Theorem 17.3 of [Quine] p. 124. This proof is adapted from nn0opthi 12350. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
omopth.1 | |
omopth.2 | |
omopth.3 | |
omopth.4 |
Ref | Expression |
---|---|
omopthi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omopth.1 | . . . . . . . . . . . . 13 | |
2 | omopth.2 | . . . . . . . . . . . . 13 | |
3 | 1, 2 | nnacli 7282 | . . . . . . . . . . . 12 |
4 | 3 | nnoni 6707 | . . . . . . . . . . 11 |
5 | 4 | onordi 4987 | . . . . . . . . . 10 |
6 | omopth.3 | . . . . . . . . . . . . 13 | |
7 | omopth.4 | . . . . . . . . . . . . 13 | |
8 | 6, 7 | nnacli 7282 | . . . . . . . . . . . 12 |
9 | 8 | nnoni 6707 | . . . . . . . . . . 11 |
10 | 9 | onordi 4987 | . . . . . . . . . 10 |
11 | ordtri3 4919 | . . . . . . . . . 10 | |
12 | 5, 10, 11 | mp2an 672 | . . . . . . . . 9 |
13 | 12 | con2bii 332 | . . . . . . . 8 |
14 | 1, 2, 8, 7 | omopthlem2 7324 | . . . . . . . . . 10 |
15 | eqcom 2466 | . . . . . . . . . 10 | |
16 | 14, 15 | sylnib 304 | . . . . . . . . 9 |
17 | 6, 7, 3, 2 | omopthlem2 7324 | . . . . . . . . 9 |
18 | 16, 17 | jaoi 379 | . . . . . . . 8 |
19 | 13, 18 | sylbir 213 | . . . . . . 7 |
20 | 19 | con4i 130 | . . . . . 6 |
21 | id 22 | . . . . . . . . 9 | |
22 | 20, 20 | oveq12d 6314 | . . . . . . . . . 10 |
23 | 22 | oveq1d 6311 | . . . . . . . . 9 |
24 | 21, 23 | eqtr4d 2501 | . . . . . . . 8 |
25 | 3, 3 | nnmcli 7283 | . . . . . . . . 9 |
26 | nnacan 7296 | . . . . . . . . 9 | |
27 | 25, 2, 7, 26 | mp3an 1324 | . . . . . . . 8 |
28 | 24, 27 | sylib 196 | . . . . . . 7 |
29 | 28 | oveq2d 6312 | . . . . . 6 |
30 | 20, 29 | eqtr4d 2501 | . . . . 5 |
31 | nnacom 7285 | . . . . . 6 | |
32 | 2, 1, 31 | mp2an 672 | . . . . 5 |
33 | nnacom 7285 | . . . . . 6 | |
34 | 2, 6, 33 | mp2an 672 | . . . . 5 |
35 | 30, 32, 34 | 3eqtr4g 2523 | . . . 4 |
36 | nnacan 7296 | . . . . 5 | |
37 | 2, 1, 6, 36 | mp3an 1324 | . . . 4 |
38 | 35, 37 | sylib 196 | . . 3 |
39 | 38, 28 | jca 532 | . 2 |
40 | oveq12 6305 | . . . 4 | |
41 | 40, 40 | oveq12d 6314 | . . 3 |
42 | simpr 461 | . . 3 | |
43 | 41, 42 | oveq12d 6314 | . 2 |
44 | 39, 43 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 Ord word 4882 (class class class)co 6296
com 6700
coa 7146
comu 7147 |
This theorem is referenced by: omopth 7326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 |
Copyright terms: Public domain | W3C validator |