![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > omsmo | Unicode version |
Description: A strictly monotonic ordinal function on the set of natural numbers is one-to-one. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.) |
Ref | Expression |
---|---|
omsmo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 755 | . 2 | |
2 | omsmolem 7321 | . . . . . . . . 9 | |
3 | 2 | adantl 466 | . . . . . . . 8 |
4 | 3 | imp 429 | . . . . . . 7 |
5 | omsmolem 7321 | . . . . . . . . 9 | |
6 | 5 | adantr 465 | . . . . . . . 8 |
7 | 6 | imp 429 | . . . . . . 7 |
8 | 4, 7 | orim12d 838 | . . . . . 6 |
9 | 8 | ancoms 453 | . . . . 5 |
10 | 9 | con3d 133 | . . . 4 |
11 | ffvelrn 6029 | . . . . . . . . . . 11 | |
12 | ssel 3497 | . . . . . . . . . . 11 | |
13 | 11, 12 | syl5 32 | . . . . . . . . . 10 |
14 | 13 | expdimp 437 | . . . . . . . . 9 |
15 | eloni 4893 | . . . . . . . . 9 | |
16 | 14, 15 | syl6 33 | . . . . . . . 8 |
17 | ffvelrn 6029 | . . . . . . . . . . 11 | |
18 | ssel 3497 | . . . . . . . . . . 11 | |
19 | 17, 18 | syl5 32 | . . . . . . . . . 10 |
20 | 19 | expdimp 437 | . . . . . . . . 9 |
21 | eloni 4893 | . . . . . . . . 9 | |
22 | 20, 21 | syl6 33 | . . . . . . . 8 |
23 | 16, 22 | anim12d 563 | . . . . . . 7 |
24 | 23 | imp 429 | . . . . . 6 |
25 | ordtri3 4919 | . . . . . 6 | |
26 | 24, 25 | syl 16 | . . . . 5 |
27 | 26 | adantlr 714 | . . . 4 |
28 | nnord 6708 | . . . . . 6 | |
29 | nnord 6708 | . . . . . 6 | |
30 | ordtri3 4919 | . . . . . 6 | |
31 | 28, 29, 30 | syl2an 477 | . . . . 5 |
32 | 31 | adantl 466 | . . . 4 |
33 | 10, 27, 32 | 3imtr4d 268 | . . 3 |
34 | 33 | ralrimivva 2878 | . 2 |
35 | dff13 6166 | . 2 | |
36 | 1, 34, 35 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
C_ wss 3475 Ord word 4882 con0 4883 suc csuc 4885 --> wf 5589
-1-1-> wf1 5590
` cfv 5593 com 6700 |
This theorem is referenced by: unblem4 7795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fv 5601 df-om 6701 |
Copyright terms: Public domain | W3C validator |