MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondif2 Unicode version

Theorem ondif2 7171
Description: Two ways to say that is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
ondif2

Proof of Theorem ondif2
StepHypRef Expression
1 eldif 3485 . 2
2 1on 7156 . . . . 5
3 ontri1 4917 . . . . . 6
4 onsssuc 4970 . . . . . . 7
5 df-2o 7150 . . . . . . . 8
65eleq2i 2535 . . . . . . 7
74, 6syl6bbr 263 . . . . . 6
83, 7bitr3d 255 . . . . 5
92, 8mpan2 671 . . . 4
109con1bid 330 . . 3
1110pm5.32i 637 . 2
121, 11bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  /\wa 369  e.wcel 1818  \cdif 3472  C_wss 3475   con0 4883  succsuc 4885   c1o 7142   c2o 7143
This theorem is referenced by:  dif20el  7174  oeordi  7255  oewordi  7259  oaabs2  7313  omabs  7315  cnfcom3clem  8170  cnfcom3clemOLD  8178  infxpenc2lem1  8417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691  ax-un 6592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-tr 4546  df-eprel 4796  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-suc 4889  df-1o 7149  df-2o 7150
  Copyright terms: Public domain W3C validator