Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneli Unicode version

Theorem oneli 4990
 Description: A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1
Assertion
Ref Expression
oneli

Proof of Theorem oneli
StepHypRef Expression
1 on.1 . 2
2 onelon 4908 . 2
31, 2mpan 670 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  e.wcel 1818   con0 4883 This theorem is referenced by:  onssneli  4992  oawordeulem  7222  rankuni  8302  tcrank  8323  cardne  8367  cardval2  8393  alephsuc2  8482  cfsmolem  8671  cfcof  8675  alephreg  8978  pwcfsdom  8979  tskcard  9180  onsucconi  29902 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-tr 4546  df-eprel 4796  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887
 Copyright terms: Public domain W3C validator