![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oneo | Unicode version |
Description: If an ordinal number is even, its successor is odd. (Contributed by NM, 26-Jan-2006.) |
Ref | Expression |
---|---|
oneo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onnbtwn 4974 | . . 3 | |
2 | 1 | 3ad2ant1 1017 | . 2 |
3 | suceq 4948 | . . . . 5 | |
4 | 3 | eqeq1d 2459 | . . . 4 |
5 | 4 | 3ad2ant3 1019 | . . 3 |
6 | ovex 6324 | . . . . . . . 8 | |
7 | 6 | sucid 4962 | . . . . . . 7 |
8 | eleq2 2530 | . . . . . . 7 | |
9 | 7, 8 | mpbii 211 | . . . . . 6 |
10 | 2on 7157 | . . . . . . . 8 | |
11 | omord 7236 | . . . . . . . 8 | |
12 | 10, 11 | mp3an3 1313 | . . . . . . 7 |
13 | simpl 457 | . . . . . . 7 | |
14 | 12, 13 | syl6bir 229 | . . . . . 6 |
15 | 9, 14 | syl5 32 | . . . . 5 |
16 | simpr 461 | . . . . . . . . 9 | |
17 | omcl 7205 | . . . . . . . . . . . . 13 | |
18 | 10, 17 | mpan 670 | . . . . . . . . . . . 12 |
19 | oa1suc 7200 | . . . . . . . . . . . 12 | |
20 | 18, 19 | syl 16 | . . . . . . . . . . 11 |
21 | 1on 7156 | . . . . . . . . . . . . . . . 16 | |
22 | 21 | elexi 3119 | . . . . . . . . . . . . . . 15 |
23 | 22 | sucid 4962 | . . . . . . . . . . . . . 14 |
24 | df-2o 7150 | . . . . . . . . . . . . . 14 | |
25 | 23, 24 | eleqtrri 2544 | . . . . . . . . . . . . 13 |
26 | oaord 7215 | . . . . . . . . . . . . . . 15 | |
27 | 21, 10, 26 | mp3an12 1314 | . . . . . . . . . . . . . 14 |
28 | 18, 27 | syl 16 | . . . . . . . . . . . . 13 |
29 | 25, 28 | mpbii 211 | . . . . . . . . . . . 12 |
30 | omsuc 7195 | . . . . . . . . . . . . 13 | |
31 | 10, 30 | mpan 670 | . . . . . . . . . . . 12 |
32 | 29, 31 | eleqtrrd 2548 | . . . . . . . . . . 11 |
33 | 20, 32 | eqeltrrd 2546 | . . . . . . . . . 10 |
34 | 33 | ad2antrr 725 | . . . . . . . . 9 |
35 | 16, 34 | eqeltrrd 2546 | . . . . . . . 8 |
36 | suceloni 6648 | . . . . . . . . . . 11 | |
37 | omord 7236 | . . . . . . . . . . . 12 | |
38 | 10, 37 | mp3an3 1313 | . . . . . . . . . . 11 |
39 | 36, 38 | sylan2 474 | . . . . . . . . . 10 |
40 | 39 | ancoms 453 | . . . . . . . . 9 |
41 | 40 | adantr 465 | . . . . . . . 8 |
42 | 35, 41 | mpbird 232 | . . . . . . 7 |
43 | 42 | simpld 459 | . . . . . 6 |
44 | 43 | ex 434 | . . . . 5 |
45 | 15, 44 | jcad 533 | . . . 4 |
46 | 45 | 3adant3 1016 | . . 3 |
47 | 5, 46 | sylbid 215 | . 2 |
48 | 2, 47 | mtod 177 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 c0 3784 con0 4883 suc csuc 4885 (class class class)co 6296
c1o 7142
c2o 7143
coa 7146
comu 7147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 |
Copyright terms: Public domain | W3C validator |