![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oneqmin | Unicode version |
Description: A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) |
Ref | Expression |
---|---|
oneqmin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onint 6630 | . . . 4 | |
2 | eleq1 2529 | . . . 4 | |
3 | 1, 2 | syl5ibrcom 222 | . . 3 |
4 | eleq2 2530 | . . . . . . 7 | |
5 | 4 | biimpd 207 | . . . . . 6 |
6 | onnmin 6638 | . . . . . . . 8 | |
7 | 6 | ex 434 | . . . . . . 7 |
8 | 7 | con2d 115 | . . . . . 6 |
9 | 5, 8 | syl9r 72 | . . . . 5 |
10 | 9 | ralrimdv 2873 | . . . 4 |
11 | 10 | adantr 465 | . . 3 |
12 | 3, 11 | jcad 533 | . 2 |
13 | oneqmini 4934 | . . 3 | |
14 | 13 | adantr 465 | . 2 |
15 | 12, 14 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
C_ wss 3475 c0 3784 |^| cint 4286 con0 4883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 |
Copyright terms: Public domain | W3C validator |