![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oneqmini | Unicode version |
Description: A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) |
Ref | Expression |
---|---|
oneqmini |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4302 | . . . . . 6 | |
2 | ssel 3497 | . . . . . . . . . . . 12 | |
3 | ssel 3497 | . . . . . . . . . . . 12 | |
4 | 2, 3 | anim12d 563 | . . . . . . . . . . 11 |
5 | ontri1 4917 | . . . . . . . . . . 11 | |
6 | 4, 5 | syl6 33 | . . . . . . . . . 10 |
7 | 6 | expdimp 437 | . . . . . . . . 9 |
8 | 7 | pm5.74d 247 | . . . . . . . 8 |
9 | con2b 334 | . . . . . . . 8 | |
10 | 8, 9 | syl6bb 261 | . . . . . . 7 |
11 | 10 | ralbidv2 2892 | . . . . . 6 |
12 | 1, 11 | syl5bb 257 | . . . . 5 |
13 | 12 | biimprd 223 | . . . 4 |
14 | 13 | expimpd 603 | . . 3 |
15 | intss1 4301 | . . . . 5 | |
16 | 15 | a1i 11 | . . . 4 |
17 | 16 | adantrd 468 | . . 3 |
18 | 14, 17 | jcad 533 | . 2 |
19 | eqss 3518 | . 2 | |
20 | 18, 19 | syl6ibr 227 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 A. wral 2807 C_ wss 3475
|^| cint 4286
con0 4883 |
This theorem is referenced by: oneqmin 6640 alephval3 8512 cfsuc 8658 alephval2 8968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 |
Copyright terms: Public domain | W3C validator |