![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > onfr | Unicode version |
Description: The ordinal class is well-founded. This lemma is needed for ordon 6618 in order to eliminate the need for the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
onfr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfepfr 4869 | . 2 | |
2 | n0 3794 | . . . 4 | |
3 | ineq2 3693 | . . . . . . . . . 10 | |
4 | 3 | eqeq1d 2459 | . . . . . . . . 9 |
5 | 4 | rspcev 3210 | . . . . . . . 8 |
6 | 5 | adantll 713 | . . . . . . 7 |
7 | inss1 3717 | . . . . . . . 8 | |
8 | ssel2 3498 | . . . . . . . . . . . 12 | |
9 | eloni 4893 | . . . . . . . . . . . 12 | |
10 | 8, 9 | syl 16 | . . . . . . . . . . 11 |
11 | ordfr 4898 | . . . . . . . . . . 11 | |
12 | 10, 11 | syl 16 | . . . . . . . . . 10 |
13 | inss2 3718 | . . . . . . . . . . 11 | |
14 | vex 3112 | . . . . . . . . . . . . 13 | |
15 | 14 | inex1 4593 | . . . . . . . . . . . 12 |
16 | 15 | epfrc 4870 | . . . . . . . . . . 11 |
17 | 13, 16 | mp3an2 1312 | . . . . . . . . . 10 |
18 | 12, 17 | sylan 471 | . . . . . . . . 9 |
19 | inass 3707 | . . . . . . . . . . . . 13 | |
20 | 10 | adantr 465 | . . . . . . . . . . . . . . . 16 |
21 | simpr 461 | . . . . . . . . . . . . . . . . 17 | |
22 | 13, 21 | sseldi 3501 | . . . . . . . . . . . . . . . 16 |
23 | ordelss 4899 | . . . . . . . . . . . . . . . 16 | |
24 | 20, 22, 23 | syl2anc 661 | . . . . . . . . . . . . . . 15 |
25 | dfss1 3702 | . . . . . . . . . . . . . . 15 | |
26 | 24, 25 | sylib 196 | . . . . . . . . . . . . . 14 |
27 | 26 | ineq2d 3699 | . . . . . . . . . . . . 13 |
28 | 19, 27 | syl5eq 2510 | . . . . . . . . . . . 12 |
29 | 28 | eqeq1d 2459 | . . . . . . . . . . 11 |
30 | 29 | rexbidva 2965 | . . . . . . . . . 10 |
31 | 30 | adantr 465 | . . . . . . . . 9 |
32 | 18, 31 | mpbid 210 | . . . . . . . 8 |
33 | ssrexv 3564 | . . . . . . . 8 | |
34 | 7, 32, 33 | mpsyl 63 | . . . . . . 7 |
35 | 6, 34 | pm2.61dane 2775 | . . . . . 6 |
36 | 35 | ex 434 | . . . . 5 |
37 | 36 | exlimdv 1724 | . . . 4 |
38 | 2, 37 | syl5bi 217 | . . 3 |
39 | 38 | imp 429 | . 2 |
40 | 1, 39 | mpgbir 1622 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 =/= wne 2652 E. wrex 2808
i^i cin 3474 C_ wss 3475 c0 3784 cep 4794
Fr wfr 4840 Ord word 4882 con0 4883 |
This theorem is referenced by: ordon 6618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 |
Copyright terms: Public domain | W3C validator |