Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  onn0 Unicode version

Theorem onn0 4947
 Description: The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.)
Assertion
Ref Expression
onn0

Proof of Theorem onn0
StepHypRef Expression
1 0elon 4936 . 2
21ne0ii 3791 1
 Colors of variables: wff setvar class Syntax hints:  =/=wne 2652   c0 3784   con0 4883 This theorem is referenced by:  limon  6671 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-nul 4581 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-in 3482  df-ss 3489  df-nul 3785  df-pw 4014  df-uni 4250  df-tr 4546  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887
 Copyright terms: Public domain W3C validator