![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > onnseq | Unicode version |
Description: There are no length decreasing sequences in the ordinals. See also noinfep 8097 for a stronger version assuming Regularity. (Contributed by Mario Carneiro, 19-May-2015.) |
Ref | Expression |
---|---|
onnseq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon 6619 | . . . . . 6 | |
2 | 1 | a1i 11 | . . . . 5 |
3 | fveq2 5871 | . . . . . . . . . . 11 | |
4 | 3 | eleq1d 2526 | . . . . . . . . . 10 |
5 | fveq2 5871 | . . . . . . . . . . 11 | |
6 | 5 | eleq1d 2526 | . . . . . . . . . 10 |
7 | fveq2 5871 | . . . . . . . . . . 11 | |
8 | 7 | eleq1d 2526 | . . . . . . . . . 10 |
9 | simpl 457 | . . . . . . . . . 10 | |
10 | suceq 4948 | . . . . . . . . . . . . . . 15 | |
11 | 10 | fveq2d 5875 | . . . . . . . . . . . . . 14 |
12 | fveq2 5871 | . . . . . . . . . . . . . 14 | |
13 | 11, 12 | eleq12d 2539 | . . . . . . . . . . . . 13 |
14 | 13 | rspcv 3206 | . . . . . . . . . . . 12 |
15 | onelon 4908 | . . . . . . . . . . . . 13 | |
16 | 15 | expcom 435 | . . . . . . . . . . . 12 |
17 | 14, 16 | syl6 33 | . . . . . . . . . . 11 |
18 | 17 | adantld 467 | . . . . . . . . . 10 |
19 | 4, 6, 8, 9, 18 | finds2 6728 | . . . . . . . . 9 |
20 | 19 | com12 31 | . . . . . . . 8 |
21 | 20 | ralrimiv 2869 | . . . . . . 7 |
22 | eqid 2457 | . . . . . . . 8 | |
23 | 22 | fmpt 6052 | . . . . . . 7 |
24 | 21, 23 | sylib 196 | . . . . . 6 |
25 | frn 5742 | . . . . . 6 | |
26 | 24, 25 | syl 16 | . . . . 5 |
27 | peano1 6719 | . . . . . . . 8 | |
28 | fdm 5740 | . . . . . . . . 9 | |
29 | 24, 28 | syl 16 | . . . . . . . 8 |
30 | 27, 29 | syl5eleqr 2552 | . . . . . . 7 |
31 | ne0i 3790 | . . . . . . 7 | |
32 | 30, 31 | syl 16 | . . . . . 6 |
33 | dm0rn0 5224 | . . . . . . 7 | |
34 | 33 | necon3bii 2725 | . . . . . 6 |
35 | 32, 34 | sylib 196 | . . . . 5 |
36 | wefrc 4878 | . . . . 5 | |
37 | 2, 26, 35, 36 | syl3anc 1228 | . . . 4 |
38 | fvex 5881 | . . . . . 6 | |
39 | 38 | rgenw 2818 | . . . . 5 |
40 | fveq2 5871 | . . . . . . 7 | |
41 | 40 | cbvmptv 4543 | . . . . . 6 |
42 | ineq2 3693 | . . . . . . 7 | |
43 | 42 | eqeq1d 2459 | . . . . . 6 |
44 | 41, 43 | rexrnmpt 6041 | . . . . 5 |
45 | 39, 44 | ax-mp 5 | . . . 4 |
46 | 37, 45 | sylib 196 | . . 3 |
47 | peano2 6720 | . . . . . . . . 9 | |
48 | 47 | adantl 466 | . . . . . . . 8 |
49 | eqid 2457 | . . . . . . . 8 | |
50 | fveq2 5871 | . . . . . . . . . 10 | |
51 | 50 | eqeq2d 2471 | . . . . . . . . 9 |
52 | 51 | rspcev 3210 | . . . . . . . 8 |
53 | 48, 49, 52 | sylancl 662 | . . . . . . 7 |
54 | fvex 5881 | . . . . . . . 8 | |
55 | 22 | elrnmpt 5254 | . . . . . . . 8 |
56 | 54, 55 | ax-mp 5 | . . . . . . 7 |
57 | 53, 56 | sylibr 212 | . . . . . 6 |
58 | suceq 4948 | . . . . . . . . . 10 | |
59 | 58 | fveq2d 5875 | . . . . . . . . 9 |
60 | fveq2 5871 | . . . . . . . . 9 | |
61 | 59, 60 | eleq12d 2539 | . . . . . . . 8 |
62 | 61 | rspccva 3209 | . . . . . . 7 |
63 | 62 | adantll 713 | . . . . . 6 |
64 | inelcm 3881 | . . . . . 6 | |
65 | 57, 63, 64 | syl2anc 661 | . . . . 5 |
66 | 65 | neneqd 2659 | . . . 4 |
67 | 66 | nrexdv 2913 | . . 3 |
68 | 46, 67 | pm2.65da 576 | . 2 |
69 | rexnal 2905 | . 2 | |
70 | 68, 69 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
E. wrex 2808 cvv 3109
i^i cin 3474 C_ wss 3475 c0 3784 e. cmpt 4510 cep 4794
We wwe 4842 con0 4883 suc csuc 4885 dom cdm 5004
ran crn 5005 --> wf 5589 ` cfv 5593
com 6700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-om 6701 |
Copyright terms: Public domain | W3C validator |