![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > onomeneq | Unicode version |
Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.) |
Ref | Expression |
---|---|
onomeneq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | php5 7725 | . . . . . . . . 9 | |
2 | 1 | ad2antlr 726 | . . . . . . . 8 |
3 | enen1 7677 | . . . . . . . . 9 | |
4 | 3 | adantl 466 | . . . . . . . 8 |
5 | 2, 4 | mtbird 301 | . . . . . . 7 |
6 | peano2 6720 | . . . . . . . . . . . . . 14 | |
7 | sssucid 4960 | . . . . . . . . . . . . . 14 | |
8 | ssdomg 7581 | . . . . . . . . . . . . . 14 | |
9 | 6, 7, 8 | mpisyl 18 | . . . . . . . . . . . . 13 |
10 | endomtr 7593 | . . . . . . . . . . . . 13 | |
11 | 9, 10 | sylan2 474 | . . . . . . . . . . . 12 |
12 | 11 | ancoms 453 | . . . . . . . . . . 11 |
13 | 12 | a1d 25 | . . . . . . . . . 10 |
14 | 13 | adantll 713 | . . . . . . . . 9 |
15 | ssel 3497 | . . . . . . . . . . . . . . 15 | |
16 | 15 | com12 31 | . . . . . . . . . . . . . 14 |
17 | 16 | adantr 465 | . . . . . . . . . . . . 13 |
18 | eloni 4893 | . . . . . . . . . . . . . 14 | |
19 | ordelsuc 6655 | . . . . . . . . . . . . . 14 | |
20 | 18, 19 | sylan2 474 | . . . . . . . . . . . . 13 |
21 | 17, 20 | sylibd 214 | . . . . . . . . . . . 12 |
22 | ssdomg 7581 | . . . . . . . . . . . . 13 | |
23 | 22 | adantl 466 | . . . . . . . . . . . 12 |
24 | 21, 23 | syld 44 | . . . . . . . . . . 11 |
25 | 24 | ancoms 453 | . . . . . . . . . 10 |
26 | 25 | adantr 465 | . . . . . . . . 9 |
27 | 14, 26 | jcad 533 | . . . . . . . 8 |
28 | sbth 7657 | . . . . . . . 8 | |
29 | 27, 28 | syl6 33 | . . . . . . 7 |
30 | 5, 29 | mtod 177 | . . . . . 6 |
31 | ordom 6709 | . . . . . . . . 9 | |
32 | ordtri1 4916 | . . . . . . . . 9 | |
33 | 31, 18, 32 | sylancr 663 | . . . . . . . 8 |
34 | 33 | con2bid 329 | . . . . . . 7 |
35 | 34 | ad2antrr 725 | . . . . . 6 |
36 | 30, 35 | mpbird 232 | . . . . 5 |
37 | simplr 755 | . . . . 5 | |
38 | 36, 37 | jca 532 | . . . 4 |
39 | nneneq 7720 | . . . . 5 | |
40 | 39 | biimpa 484 | . . . 4 |
41 | 38, 40 | sylancom 667 | . . 3 |
42 | 41 | ex 434 | . 2 |
43 | eqeng 7569 | . . 3 | |
44 | 43 | adantr 465 | . 2 |
45 | 42, 44 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 C_ wss 3475 class class class wbr 4452
Ord word 4882
con0 4883 suc csuc 4885 com 6700
cen 7533 cdom 7534 |
This theorem is referenced by: onfin 7728 ficardom 8363 finnisoeu 8515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 |
Copyright terms: Public domain | W3C validator |