MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsseleq Unicode version

Theorem onsseleq 4924
Description: Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
onsseleq

Proof of Theorem onsseleq
StepHypRef Expression
1 eloni 4893 . 2
2 eloni 4893 . 2
3 ordsseleq 4912 . 2
41, 2, 3syl2an 477 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  \/wo 368  /\wa 369  =wceq 1395  e.wcel 1818  C_wss 3475  Ordword 4882   con0 4883
This theorem is referenced by:  onsseli  4997  on0eqel  5000  onmindif2  6647  omword  7238  oeword  7258  oewordi  7259  dffi3  7911  cantnflem1d  8128  cantnflem1  8129  cantnflem1dOLD  8151  cantnflem1OLD  8152  r1ord3g  8218  alephdom  8483  cardaleph  8491  cfsmolem  8671  ttukeylem5  8914  alephreg  8978  inar1  9174  gruina  9217  om2uzlt2i  12062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-tr 4546  df-eprel 4796  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887
  Copyright terms: Public domain W3C validator