MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontr1 Unicode version

Theorem ontr1 4929
Description: Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
ontr1

Proof of Theorem ontr1
StepHypRef Expression
1 eloni 4893 . 2
2 ordtr1 4926 . 2
31, 2syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  e.wcel 1818  Ordword 4882   con0 4883
This theorem is referenced by:  smoiun  7051  dif20el  7174  oeordi  7255  omabs  7315  omsmolem  7321  cofsmo  8670  cfsmolem  8671  inar1  9174  grur1a  9218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111  df-in 3482  df-ss 3489  df-uni 4250  df-tr 4546  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887
  Copyright terms: Public domain W3C validator