![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > op1stb | Unicode version |
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 5497 to extract the second member, op1sta 5495 for an alternate version, and op1st 6808 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
op1stb.1 | |
op1stb.2 |
Ref | Expression |
---|---|
op1stb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1stb.1 | . . . . . 6 | |
2 | op1stb.2 | . . . . . 6 | |
3 | 1, 2 | dfop 4216 | . . . . 5 |
4 | 3 | inteqi 4290 | . . . 4 |
5 | snex 4693 | . . . . . 6 | |
6 | prex 4694 | . . . . . 6 | |
7 | 5, 6 | intpr 4320 | . . . . 5 |
8 | snsspr1 4179 | . . . . . 6 | |
9 | df-ss 3489 | . . . . . 6 | |
10 | 8, 9 | mpbi 208 | . . . . 5 |
11 | 7, 10 | eqtri 2486 | . . . 4 |
12 | 4, 11 | eqtri 2486 | . . 3 |
13 | 12 | inteqi 4290 | . 2 |
14 | 1 | intsn 4323 | . 2 |
15 | 13, 14 | eqtri 2486 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
cvv 3109
i^i cin 3474 C_ wss 3475 { csn 4029
{ cpr 4031 <. cop 4035 |^| cint 4286 |
This theorem is referenced by: elreldm 5232 op2ndb 5497 elxp5 6745 1stval2 6817 fundmen 7609 xpsnen 7621 xpnnenOLD 13943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-int 4287 |
Copyright terms: Public domain | W3C validator |