MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op2ndb Unicode version

Theorem op2ndb 5497
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4722 to extract the first member, op2nda 5498 for an alternate version, and op2nd 6809 for the preferred version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
cnvsn.1
cnvsn.2
Assertion
Ref Expression
op2ndb

Proof of Theorem op2ndb
StepHypRef Expression
1 cnvsn.1 . . . . . . 7
2 cnvsn.2 . . . . . . 7
31, 2cnvsn 5496 . . . . . 6
43inteqi 4290 . . . . 5
5 opex 4716 . . . . . 6
65intsn 4323 . . . . 5
74, 6eqtri 2486 . . . 4
87inteqi 4290 . . 3
98inteqi 4290 . 2
102, 1op1stb 4722 . 2
119, 10eqtri 2486 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  e.wcel 1818   cvv 3109  {csn 4029  <.cop 4035  |^|cint 4286  `'ccnv 5003
This theorem is referenced by:  2ndval2  6818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-int 4287  df-br 4453  df-opab 4511  df-xp 5010  df-rel 5011  df-cnv 5012
  Copyright terms: Public domain W3C validator