MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex Unicode version

Theorem opabex 6141
Description: Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996.)
Hypotheses
Ref Expression
opabex.1
opabex.2
Assertion
Ref Expression
opabex
Distinct variable group:   , ,

Proof of Theorem opabex
StepHypRef Expression
1 funopab 5626 . . 3
2 opabex.2 . . . 4
3 moanimv 2352 . . . 4
42, 3mpbir 209 . . 3
51, 4mpgbir 1622 . 2
6 opabex.1 . . 3
7 dmopabss 5219 . . 3
86, 7ssexi 4597 . 2
9 funex 6140 . 2
105, 8, 9mp2an 672 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  e.wcel 1818  E*wmo 2283   cvv 3109  {copab 4509  domcdm 5004  Funwfun 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601
  Copyright terms: Public domain W3C validator