![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > opabiota | Unicode version |
Description: Define a function whose
value is "the unique such that
( x , ) ".
(Contributed by NM, 16-Nov-2013.) |
Ref | Expression |
---|---|
opabiota.1 | |
opabiota.2 |
Ref | Expression |
---|---|
opabiota |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5871 | . . 3 | |
2 | opabiota.2 | . . . 4 | |
3 | 2 | iotabidv 5577 | . . 3 |
4 | 1, 3 | eqeq12d 2479 | . 2 |
5 | vex 3112 | . . . 4 | |
6 | 5 | eldm 5205 | . . 3 |
7 | nfiota1 5558 | . . . . 5 | |
8 | 7 | nfeq2 2636 | . . . 4 |
9 | opabiota.1 | . . . . . . 7 | |
10 | 9 | opabiotafun 5934 | . . . . . 6 |
11 | funbrfv 5911 | . . . . . 6 | |
12 | 10, 11 | ax-mp 5 | . . . . 5 |
13 | df-br 4453 | . . . . . . . 8 | |
14 | 9 | eleq2i 2535 | . . . . . . . 8 |
15 | opabid 4759 | . . . . . . . 8 | |
16 | 13, 14, 15 | 3bitri 271 | . . . . . . 7 |
17 | ssnid 4058 | . . . . . . . . 9 | |
18 | id 22 | . . . . . . . . 9 | |
19 | 17, 18 | syl5eleqr 2552 | . . . . . . . 8 |
20 | abid 2444 | . . . . . . . 8 | |
21 | 19, 20 | sylib 196 | . . . . . . 7 |
22 | 16, 21 | sylbi 195 | . . . . . 6 |
23 | vex 3112 | . . . . . . . . 9 | |
24 | 5, 23 | breldm 5212 | . . . . . . . 8 |
25 | 9 | opabiotadm 5935 | . . . . . . . . 9 |
26 | 25 | abeq2i 2584 | . . . . . . . 8 |
27 | 24, 26 | sylib 196 | . . . . . . 7 |
28 | iota1 5570 | . . . . . . 7 | |
29 | 27, 28 | syl 16 | . . . . . 6 |
30 | 22, 29 | mpbid 210 | . . . . 5 |
31 | 12, 30 | eqtr4d 2501 | . . . 4 |
32 | 8, 31 | exlimi 1912 | . . 3 |
33 | 6, 32 | sylbi 195 | . 2 |
34 | 4, 33 | vtoclga 3173 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 E. wex 1612 e. wcel 1818
E! weu 2282 { cab 2442 { csn 4029
<. cop 4035 class class class wbr 4452
{ copab 4509 dom cdm 5004
iota cio 5554 Fun wfun 5587 ` cfv 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 |
Copyright terms: Public domain | W3C validator |