![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > opabiotafun | Unicode version |
Description: Define a function whose
value is "the unique such that
( x , ) ".
(Contributed by NM, 19-May-2015.) |
Ref | Expression |
---|---|
opabiota.1 |
Ref | Expression |
---|---|
opabiotafun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab 5626 | . . 3 | |
2 | mo2icl 3278 | . . . . 5 | |
3 | unieq 4257 | . . . . . 6 | |
4 | vex 3112 | . . . . . . 7 | |
5 | 4 | unisn 4264 | . . . . . 6 |
6 | 3, 5 | syl6req 2515 | . . . . 5 |
7 | 2, 6 | mpg 1620 | . . . 4 |
8 | nfv 1707 | . . . . 5 | |
9 | nfab1 2621 | . . . . . 6 | |
10 | 9 | nfeq1 2634 | . . . . 5 |
11 | sneq 4039 | . . . . . 6 | |
12 | 11 | eqeq2d 2471 | . . . . 5 |
13 | 8, 10, 12 | cbvmo 2322 | . . . 4 |
14 | 7, 13 | mpbir 209 | . . 3 |
15 | 1, 14 | mpgbir 1622 | . 2 |
16 | opabiota.1 | . . 3 | |
17 | 16 | funeqi 5613 | . 2 |
18 | 15, 17 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
E* wmo 2283 { cab 2442 { csn 4029
U. cuni 4249 { copab 4509 Fun wfun 5587 |
This theorem is referenced by: opabiota 5936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-fun 5595 |
Copyright terms: Public domain | W3C validator |