MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopaba Unicode version

Theorem opelopaba 4768
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopaba.1
opelopaba.2
opelopaba.3
Assertion
Ref Expression
opelopaba
Distinct variable groups:   , ,   , ,   , ,

Proof of Theorem opelopaba
StepHypRef Expression
1 opelopaba.1 . 2
2 opelopaba.2 . 2
3 opelopaba.3 . . 3
43opelopabga 4765 . 2
51, 2, 4mp2an 672 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818   cvv 3109  <.cop 4035  {copab 4509
This theorem is referenced by:  canthwelem  9049  canthwe  9050  bcthlem1  21763  bj-elid  34599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-opab 4511
  Copyright terms: Public domain W3C validator