![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > opelopabgf | Unicode version |
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 4770 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.) |
Ref | Expression |
---|---|
opelopabgf.x | |
opelopabgf.y | |
opelopabgf.1 | |
opelopabgf.2 |
Ref | Expression |
---|---|
opelopabgf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabsb 4762 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | nfcv 2619 | . . . . 5 | |
4 | opelopabgf.x | . . . . 5 | |
5 | 3, 4 | nfsbc 3349 | . . . 4 |
6 | opelopabgf.1 | . . . . 5 | |
7 | 6 | sbcbidv 3386 | . . . 4 |
8 | 5, 7 | sbciegf 3359 | . . 3 |
9 | 8 | adantr 465 | . 2 |
10 | opelopabgf.y | . . . 4 | |
11 | opelopabgf.2 | . . . 4 | |
12 | 10, 11 | sbciegf 3359 | . . 3 |
13 | 12 | adantl 466 | . 2 |
14 | 2, 9, 13 | 3bitrd 279 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 F/ wnf 1616
e. wcel 1818 [. wsbc 3327 <. cop 4035
{ copab 4509 |
This theorem is referenced by: oprabv 6345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 |
Copyright terms: Public domain | W3C validator |