![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > opeluu | Unicode version |
Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
opeluu.1 | |
opeluu.2 |
Ref | Expression |
---|---|
opeluu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeluu.1 | . . . 4 | |
2 | 1 | prid1 4138 | . . 3 |
3 | opeluu.2 | . . . . 5 | |
4 | 1, 3 | opi2 4720 | . . . 4 |
5 | elunii 4254 | . . . 4 | |
6 | 4, 5 | mpan 670 | . . 3 |
7 | elunii 4254 | . . 3 | |
8 | 2, 6, 7 | sylancr 663 | . 2 |
9 | 3 | prid2 4139 | . . 3 |
10 | elunii 4254 | . . 3 | |
11 | 9, 6, 10 | sylancr 663 | . 2 |
12 | 8, 11 | jca 532 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
e. wcel 1818 cvv 3109
{ cpr 4031 <. cop 4035 U. cuni 4249 |
This theorem is referenced by: asymref 5388 asymref2 5389 wrdexb 12558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 |
Copyright terms: Public domain | W3C validator |