![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > opelvv | Unicode version |
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelvv.1 | |
opelvv.2 |
Ref | Expression |
---|---|
opelvv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvv.1 | . 2 | |
2 | opelvv.2 | . 2 | |
3 | opelxpi 5036 | . 2 | |
4 | 1, 2, 3 | mp2an 672 | 1 |
Colors of variables: wff setvar class |
Syntax hints: e. wcel 1818 cvv 3109
<. cop 4035 X. cxp 5002 |
This theorem is referenced by: relsnop 5112 relopabi 5133 1st2ndb 6838 eqop2 6841 evlfcl 15491 brtxp 29530 brpprod 29535 brsset 29539 brcart 29582 brcup 29589 brcap 29590 fusgraimpcl 32427 fusgraimpclALT 32429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-xp 5010 |
Copyright terms: Public domain | W3C validator |