Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeqex Unicode version

Theorem opeqex 4743
 Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
Assertion
Ref Expression
opeqex

Proof of Theorem opeqex
StepHypRef Expression
1 neeq1 2738 . 2
2 opnz 4723 . 2
3 opnz 4723 . 2
41, 2, 33bitr3g 287 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818  =/=wne 2652   cvv 3109   c0 3784  <.cop 4035 This theorem is referenced by:  oteqex2  4744  oteqex  4745  epelg  4797 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036
 Copyright terms: Public domain W3C validator