![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > opeqpr | Unicode version |
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opeqpr.1 | |
opeqpr.2 | |
opeqpr.3 | |
opeqpr.4 |
Ref | Expression |
---|---|
opeqpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2466 | . 2 | |
2 | opeqpr.1 | . . . 4 | |
3 | opeqpr.2 | . . . 4 | |
4 | 2, 3 | dfop 4216 | . . 3 |
5 | 4 | eqeq2i 2475 | . 2 |
6 | opeqpr.3 | . . 3 | |
7 | opeqpr.4 | . . 3 | |
8 | snex 4693 | . . 3 | |
9 | prex 4694 | . . 3 | |
10 | 6, 7, 8, 9 | preq12b 4206 | . 2 |
11 | 1, 5, 10 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
{ csn 4029 { cpr 4031 <. cop 4035 |
This theorem is referenced by: relop 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 |
Copyright terms: Public domain | W3C validator |