MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeqsn Unicode version

Theorem opeqsn 4748
Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
opeqsn.1
opeqsn.2
opeqsn.3
Assertion
Ref Expression
opeqsn

Proof of Theorem opeqsn
StepHypRef Expression
1 opeqsn.1 . . . 4
2 opeqsn.2 . . . 4
31, 2dfop 4216 . . 3
43eqeq1i 2464 . 2
5 snex 4693 . . 3
6 prex 4694 . . 3
7 opeqsn.3 . . 3
85, 6, 7preqsn 4213 . 2
9 eqcom 2466 . . . . 5
101, 2, 1preqsn 4213 . . . . 5
11 eqcom 2466 . . . . . . 7
1211anbi2i 694 . . . . . 6
13 anidm 644 . . . . . 6
1412, 13bitri 249 . . . . 5
159, 10, 143bitri 271 . . . 4
1615anbi1i 695 . . 3
17 dfsn2 4042 . . . . . . 7
18 preq2 4110 . . . . . . 7
1917, 18syl5req 2511 . . . . . 6
2019eqeq1d 2459 . . . . 5
21 eqcom 2466 . . . . 5
2220, 21syl6bb 261 . . . 4
2322pm5.32i 637 . . 3
2416, 23bitri 249 . 2
254, 8, 243bitri 271 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818   cvv 3109  {csn 4029  {cpr 4031  <.cop 4035
This theorem is referenced by:  relop  5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036
  Copyright terms: Public domain W3C validator