![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > opeqsn | Unicode version |
Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) |
Ref | Expression |
---|---|
opeqsn.1 | |
opeqsn.2 | |
opeqsn.3 |
Ref | Expression |
---|---|
opeqsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeqsn.1 | . . . 4 | |
2 | opeqsn.2 | . . . 4 | |
3 | 1, 2 | dfop 4216 | . . 3 |
4 | 3 | eqeq1i 2464 | . 2 |
5 | snex 4693 | . . 3 | |
6 | prex 4694 | . . 3 | |
7 | opeqsn.3 | . . 3 | |
8 | 5, 6, 7 | preqsn 4213 | . 2 |
9 | eqcom 2466 | . . . . 5 | |
10 | 1, 2, 1 | preqsn 4213 | . . . . 5 |
11 | eqcom 2466 | . . . . . . 7 | |
12 | 11 | anbi2i 694 | . . . . . 6 |
13 | anidm 644 | . . . . . 6 | |
14 | 12, 13 | bitri 249 | . . . . 5 |
15 | 9, 10, 14 | 3bitri 271 | . . . 4 |
16 | 15 | anbi1i 695 | . . 3 |
17 | dfsn2 4042 | . . . . . . 7 | |
18 | preq2 4110 | . . . . . . 7 | |
19 | 17, 18 | syl5req 2511 | . . . . . 6 |
20 | 19 | eqeq1d 2459 | . . . . 5 |
21 | eqcom 2466 | . . . . 5 | |
22 | 20, 21 | syl6bb 261 | . . . 4 |
23 | 22 | pm5.32i 637 | . . 3 |
24 | 16, 23 | bitri 249 | . 2 |
25 | 4, 8, 24 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
{ csn 4029 { cpr 4031 <. cop 4035 |
This theorem is referenced by: relop 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 |
Copyright terms: Public domain | W3C validator |