![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > opi1 | Unicode version |
Description: One of the two elements in an ordered pair. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opi1.1 | |
opi1.2 |
Ref | Expression |
---|---|
opi1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 4693 | . . 3 | |
2 | 1 | prid1 4138 | . 2 |
3 | opi1.1 | . . 3 | |
4 | opi1.2 | . . 3 | |
5 | 3, 4 | dfop 4216 | . 2 |
6 | 2, 5 | eleqtrri 2544 | 1 |
Colors of variables: wff setvar class |
Syntax hints: e. wcel 1818 cvv 3109
{ csn 4029 { cpr 4031 <. cop 4035 |
This theorem is referenced by: opth1 4725 opth 4726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 |
Copyright terms: Public domain | W3C validator |