![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > opiota | Unicode version |
Description: The property of a
uniquely specified ordered pair. The proof uses
properties of the iota description
binder. (Contributed by Mario
Carneiro, 21-May-2015.) |
Ref | Expression |
---|---|
opiota.1 | |
opiota.2 | |
opiota.3 | |
opiota.4 | |
opiota.5 |
Ref | Expression |
---|---|
opiota |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opiota.4 | . . . . . . 7 | |
2 | opiota.5 | . . . . . . 7 | |
3 | 1, 2 | ceqsrex2v 3235 | . . . . . 6 |
4 | 3 | bicomd 201 | . . . . 5 |
5 | opex 4716 | . . . . . . . 8 | |
6 | 5 | a1i 11 | . . . . . . 7 |
7 | id 22 | . . . . . . 7 | |
8 | eqeq1 2461 | . . . . . . . . . . 11 | |
9 | eqcom 2466 | . . . . . . . . . . . 12 | |
10 | vex 3112 | . . . . . . . . . . . . 13 | |
11 | vex 3112 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | opth 4726 | . . . . . . . . . . . 12 |
13 | 9, 12 | bitri 249 | . . . . . . . . . . 11 |
14 | 8, 13 | syl6bb 261 | . . . . . . . . . 10 |
15 | 14 | anbi1d 704 | . . . . . . . . 9 |
16 | 15 | 2rexbidv 2975 | . . . . . . . 8 |
17 | 16 | adantl 466 | . . . . . . 7 |
18 | nfeu1 2294 | . . . . . . 7 | |
19 | nfvd 1708 | . . . . . . 7 | |
20 | nfcvd 2620 | . . . . . . 7 | |
21 | 6, 7, 17, 18, 19, 20 | iota2df 5580 | . . . . . 6 |
22 | eqcom 2466 | . . . . . . 7 | |
23 | opiota.1 | . . . . . . . 8 | |
24 | 23 | eqeq1i 2464 | . . . . . . 7 |
25 | 22, 24 | bitri 249 | . . . . . 6 |
26 | 21, 25 | syl6bbr 263 | . . . . 5 |
27 | 4, 26 | sylan9bbr 700 | . . . 4 |
28 | 27 | pm5.32da 641 | . . 3 |
29 | opelxpi 5036 | . . . . . . . . . 10 | |
30 | simpl 457 | . . . . . . . . . . 11 | |
31 | 30 | eleq1d 2526 | . . . . . . . . . 10 |
32 | 29, 31 | syl5ibrcom 222 | . . . . . . . . 9 |
33 | 32 | rexlimivv 2954 | . . . . . . . 8 |
34 | 33 | abssi 3574 | . . . . . . 7 |
35 | iotacl 5579 | . . . . . . 7 | |
36 | 34, 35 | sseldi 3501 | . . . . . 6 |
37 | 23, 36 | syl5eqel 2549 | . . . . 5 |
38 | opelxp 5034 | . . . . . 6 | |
39 | eleq1 2529 | . . . . . 6 | |
40 | 38, 39 | syl5bbr 259 | . . . . 5 |
41 | 37, 40 | syl5ibrcom 222 | . . . 4 |
42 | 41 | pm4.71rd 635 | . . 3 |
43 | 1st2nd2 6837 | . . . . 5 | |
44 | 37, 43 | syl 16 | . . . 4 |
45 | 44 | eqeq2d 2471 | . . 3 |
46 | 28, 42, 45 | 3bitr2d 281 | . 2 |
47 | df-3an 975 | . 2 | |
48 | opiota.2 | . . . . 5 | |
49 | 48 | eqeq2i 2475 | . . . 4 |
50 | opiota.3 | . . . . 5 | |
51 | 50 | eqeq2i 2475 | . . . 4 |
52 | 49, 51 | anbi12i 697 | . . 3 |
53 | fvex 5881 | . . . 4 | |
54 | fvex 5881 | . . . 4 | |
55 | 53, 54 | opth2 4730 | . . 3 |
56 | 52, 55 | bitr4i 252 | . 2 |
57 | 46, 47, 56 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 E! weu 2282 { cab 2442
E. wrex 2808 cvv 3109
<. cop 4035 X. cxp 5002 iota cio 5554
` cfv 5593 c1st 6798
c2nd 6799 |
This theorem is referenced by: oeeui 7270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fv 5601 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |