MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnz Unicode version

Theorem opnz 4723
Description: An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opnz

Proof of Theorem opnz
StepHypRef Expression
1 opprc 4239 . . 3
21necon1ai 2688 . 2
3 dfopg 4215 . . 3
4 snex 4693 . . . . 5
54prnz 4149 . . . 4
65a1i 11 . . 3
73, 6eqnetrd 2750 . 2
82, 7impbii 188 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  e.wcel 1818  =/=wne 2652   cvv 3109   c0 3784  {csn 4029  {cpr 4031  <.cop 4035
This theorem is referenced by:  opnzi  4724  opeqex  4743  opelopabsb  4762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036
  Copyright terms: Public domain W3C validator