![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oprabbid | Unicode version |
Description: Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
oprabbid.1 | |
oprabbid.2 | |
oprabbid.3 | |
oprabbid.4 |
Ref | Expression |
---|---|
oprabbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabbid.1 | . . . 4 | |
2 | oprabbid.2 | . . . . 5 | |
3 | oprabbid.3 | . . . . . 6 | |
4 | oprabbid.4 | . . . . . . 7 | |
5 | 4 | anbi2d 703 | . . . . . 6 |
6 | 3, 5 | exbid 1886 | . . . . 5 |
7 | 2, 6 | exbid 1886 | . . . 4 |
8 | 1, 7 | exbid 1886 | . . 3 |
9 | 8 | abbidv 2593 | . 2 |
10 | df-oprab 6300 | . 2 | |
11 | df-oprab 6300 | . 2 | |
12 | 9, 10, 11 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
F/ wnf 1616 { cab 2442 <. cop 4035
{ coprab 6297 |
This theorem is referenced by: oprabbidv 6351 mpt2eq123 6356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-oprab 6300 |
Copyright terms: Public domain | W3C validator |