MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabbidv Unicode version

Theorem oprabbidv 6351
Description: Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.)
Hypothesis
Ref Expression
oprabbidv.1
Assertion
Ref Expression
oprabbidv
Distinct variable groups:   , ,   , ,

Proof of Theorem oprabbidv
StepHypRef Expression
1 nfv 1707 . 2
2 nfv 1707 . 2
3 nfv 1707 . 2
4 oprabbidv.1 . 2
51, 2, 3, 4oprabbid 6350 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  {coprab 6297
This theorem is referenced by:  oprabbii  6352  mpt2eq123dva  6358  mpt2eq3dva  6361  resoprab2  6399  erovlem  7426  joinfval  15631  meetfval  15645  odumeet  15770  odujoin  15772  mppsval  28932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-oprab 6300
  Copyright terms: Public domain W3C validator