![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > orass | Unicode version |
Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
orass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 387 | . 2 | |
2 | or12 523 | . 2 | |
3 | orcom 387 | . . 3 | |
4 | 3 | orbi2i 519 | . 2 |
5 | 1, 2, 4 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 \/ wo 368 |
This theorem is referenced by: pm2.31 525 pm2.32 526 or32 527 or4 528 3orass 976 axi12 2433 unass 3660 tppreqb 4171 ltxr 11353 plydivex 22693 disjxpin 27447 impor 30478 lcmass 31218 bj-ifim123g 37706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-or 370 |
Copyright terms: Public domain | W3C validator |