MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orass Unicode version

Theorem orass 524
Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
orass

Proof of Theorem orass
StepHypRef Expression
1 orcom 387 . 2
2 or12 523 . 2
3 orcom 387 . . 3
43orbi2i 519 . 2
51, 2, 43bitri 271 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  \/wo 368
This theorem is referenced by:  pm2.31  525  pm2.32  526  or32  527  or4  528  3orass  976  axi12  2433  unass  3660  tppreqb  4171  ltxr  11353  plydivex  22693  disjxpin  27447  impor  30478  lcmass  31218  bj-ifim123g  37706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
  Copyright terms: Public domain W3C validator