![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > orbi2i | Unicode version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 |
Ref | Expression |
---|---|
orbi2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 | |
2 | 1 | biimpi 194 | . . 3 |
3 | 2 | orim2i 518 | . 2 |
4 | 1 | biimpri 206 | . . 3 |
5 | 4 | orim2i 518 | . 2 |
6 | 3, 5 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 \/ wo 368 |
This theorem is referenced by: orbi1i 520 orbi12i 521 orass 524 or4 528 or42 529 orordir 531 dn1 966 3orcomb 983 excxor 1368 dfifp6 1386 cad1 1465 19.44v 1770 nf4 1962 19.44 1969 exmidneOLD 2663 r19.30 3002 sspsstri 3605 unass 3660 undi 3744 undif3 3758 undif4 3883 ssunpr 4192 sspr 4193 sstp 4194 iinun2 4396 iinuni 4414 ordtri2 4918 on0eqel 5000 qfto 5393 somin1 5408 frxp 6910 supgtoreq 7949 wemapsolem 7996 fin1a2lem12 8812 psslinpr 9430 suplem2pr 9452 fimaxre 10515 elnn0 10822 elnn1uz2 11187 elxr 11354 xrinfmss 11530 elfzp1 11759 hashf1lem2 12505 dvdslelem 14030 pythagtrip 14358 tosso 15666 maducoeval2 19142 madugsum 19145 ist0-3 19846 limcdif 22280 ellimc2 22281 limcmpt 22287 limcres 22290 plydivex 22693 taylfval 22754 legtrid 23978 legso 23985 lmicom 24154 nb3graprlem2 24452 numclwwlk3lem 25108 atomli 27301 atoml2i 27302 or3di 27367 disjnf 27433 disjex 27451 disjexc 27452 orngsqr 27794 ind1a 28034 esumcvg 28092 voliune 28201 volfiniune 28202 dfso2 29183 socnv 29194 soseq 29334 wfrlem14 29356 wfrlem15 29357 lineunray 29797 itg2addnclem2 30067 tsxo1 30544 tsxo2 30545 tsxo3 30546 tsxo4 30547 tsna1 30551 tsna2 30552 tsna3 30553 ts3an1 30557 ts3an2 30558 ts3an3 30559 ts3or1 30560 ts3or2 30561 ts3or3 30562 prtlem90 30598 wallispilem3 31849 pr1eqbg 32297 lindslinindsimp2 33064 undif3VD 33682 bnj964 34001 bj-dfbi4 34154 bj-nf3 34197 bj-ifim123g 37706 bj-ifor123g 37725 rp-fakeoranass 37738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-or 370 |
Copyright terms: Public domain | W3C validator |