MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordeleqon Unicode version

Theorem ordeleqon 6624
Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.)
Assertion
Ref Expression
ordeleqon

Proof of Theorem ordeleqon
StepHypRef Expression
1 onprc 6620 . . . 4
2 elex 3118 . . . 4
31, 2mto 176 . . 3
4 ordon 6618 . . . . . 6
5 ordtri3or 4915 . . . . . 6
64, 5mpan2 671 . . . . 5
7 df-3or 974 . . . . 5
86, 7sylib 196 . . . 4
98ord 377 . . 3
103, 9mt3i 126 . 2
11 eloni 4893 . . 3
12 ordeq 4890 . . . 4
134, 12mpbiri 233 . . 3
1411, 13jaoi 379 . 2
1510, 14impbii 188 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  \/wo 368  \/w3o 972  =wceq 1395  e.wcel 1818   cvv 3109  Ordword 4882   con0 4883
This theorem is referenced by:  ordsson  6625  ssonprc  6627  ordunisuc  6667  orduninsuc  6678  limomss  6705  omon  6711  limom  6715  tfrlem14  7079  tfr2b  7084  unialeph  8503  ordtoplem  29900  ordcmp  29912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691  ax-un 6592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-tr 4546  df-eprel 4796  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887
  Copyright terms: Public domain W3C validator