![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ordelord | Unicode version |
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.) |
Ref | Expression |
---|---|
ordelord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2529 | . . . . 5 | |
2 | 1 | anbi2d 703 | . . . 4 |
3 | ordeq 4890 | . . . 4 | |
4 | 2, 3 | imbi12d 320 | . . 3 |
5 | simpll 753 | . . . . . . . . 9 | |
6 | 3anrot 978 | . . . . . . . . . . . 12 | |
7 | 3anass 977 | . . . . . . . . . . . 12 | |
8 | 6, 7 | bitr3i 251 | . . . . . . . . . . 11 |
9 | ordtr 4897 | . . . . . . . . . . . 12 | |
10 | trel3 4553 | . . . . . . . . . . . 12 | |
11 | 9, 10 | syl 16 | . . . . . . . . . . 11 |
12 | 8, 11 | syl5bir 218 | . . . . . . . . . 10 |
13 | 12 | impl 620 | . . . . . . . . 9 |
14 | trel 4552 | . . . . . . . . . . . . 13 | |
15 | 9, 14 | syl 16 | . . . . . . . . . . . 12 |
16 | 15 | expcomd 438 | . . . . . . . . . . 11 |
17 | 16 | imp31 432 | . . . . . . . . . 10 |
18 | 17 | adantrl 715 | . . . . . . . . 9 |
19 | simplr 755 | . . . . . . . . 9 | |
20 | ordwe 4896 | . . . . . . . . . 10 | |
21 | wetrep 4877 | . . . . . . . . . 10 | |
22 | 20, 21 | sylan 471 | . . . . . . . . 9 |
23 | 5, 13, 18, 19, 22 | syl13anc 1230 | . . . . . . . 8 |
24 | 23 | ex 434 | . . . . . . 7 |
25 | 24 | pm2.43d 48 | . . . . . 6 |
26 | 25 | alrimivv 1720 | . . . . 5 |
27 | dftr2 4547 | . . . . 5 | |
28 | 26, 27 | sylibr 212 | . . . 4 |
29 | trss 4554 | . . . . . . 7 | |
30 | 9, 29 | syl 16 | . . . . . 6 |
31 | wess 4871 | . . . . . 6 | |
32 | 30, 20, 31 | syl6ci 65 | . . . . 5 |
33 | 32 | imp 429 | . . . 4 |
34 | df-ord 4886 | . . . 4 | |
35 | 28, 33, 34 | sylanbrc 664 | . . 3 |
36 | 4, 35 | vtoclg 3167 | . 2 |
37 | 36 | anabsi7 819 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 A. wal 1393 = wceq 1395
e. wcel 1818 C_ wss 3475 Tr wtr 4545
cep 4794
We wwe 4842 Ord word 4882 |
This theorem is referenced by: tron 4906 ordelon 4907 ordtr2 4927 ordtr3 4928 ordintdif 4932 ordsuc 6649 ordsucss 6653 ordsucelsuc 6657 ordsucuniel 6659 limsssuc 6685 smores 7042 smo11 7054 smoord 7055 smoword 7056 smogt 7057 smorndom 7058 rdglim2 7117 oesuclem 7194 ordtypelem3 7966 r1val1 8225 rankr1ag 8241 fin23lem24 8723 onsuct0 29906 dford3 30970 ordpss 31360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 |
Copyright terms: Public domain | W3C validator |