MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordfr Unicode version

Theorem ordfr 4898
Description: Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
ordfr

Proof of Theorem ordfr
StepHypRef Expression
1 ordwe 4896 . 2
2 wefr 4874 . 2
31, 2syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4   cep 4794  Frwfr 4840  Wewwe 4842  Ordword 4882
This theorem is referenced by:  ordirr  4901  tz7.7  4909  onfr  4922  bnj580  33971  bnj1053  34032  bnj1071  34033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-we 4845  df-ord 4886
  Copyright terms: Public domain W3C validator